Phasing in crystallography :: a modern perspective /
Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macrom...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group ofscientists, but may be attained in a large number of laboratories around the world, even by young scientists. New prob. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9780191510618 0191510610 1306152429 9781306152426 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn864714840 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131205s2013 enka ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d EBLCP |d CDX |d YDXCP |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d AU@ |d OCLCQ |d CQ$ |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 864383127 | ||
020 | |a 9780191510618 |q (electronic bk.) | ||
020 | |a 0191510610 |q (electronic bk.) | ||
020 | |a 1306152429 |q (ebk) | ||
020 | |a 9781306152426 |q (ebk) | ||
020 | |z 9780199686995 | ||
020 | |z 0199686998 | ||
035 | |a (OCoLC)864714840 |z (OCoLC)864383127 | ||
037 | |a 546493 |b MIL | ||
050 | 4 | |a QD945 | |
072 | 7 | |a SCI |x 016000 |2 bisacsh | |
082 | 7 | |a 548 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Giacovazzo, Carmelo, |e author. | |
245 | 1 | 0 | |a Phasing in crystallography : |b a modern perspective / |c Carmelo Giacovazzo. |
264 | 1 | |a Oxford : |b Oxford University Press, |c 2013. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Acknowledgements; Preface; Contents; Symbols and notation; 1 Fundamentals of crystallography; 1.1 Introduction; 1.2 Crystals and crystallographic symmetry in direct space; 1.3 The reciprocal space; 1.4 The structure factor; 1.5 Symmetry in reciprocal space; 1.5.1 Friedel law; 1.5.2 Effects of symmetry operators in reciprocal space; 1.5.3 Determination of reflections with restricted phase values; 1.5.4 Systematic absences; 1.6 The basic postulate of structural crystallography; 1.7 The legacy of crystallography; 2 Wilson statistics; 2.1 Introduction. | |
505 | 8 | |a 2.B.1 The algebraic form of the structure factor2.B.2 Structure factor statistics for centric and acentric space groups; APPENDIX 2.C THE DEBYE FORMULA; 3 The origin problem, invariants, and seminvariants; 3.1 Introduction; 3.2 Origin, phases, and symmetry operators; 3.3 The concept of structure invariant; 3.4 Allowed or permissible origins in primitive space groups; 3.5 The concept of structure seminvariant; 3.6 Allowed or permissible origins in centred cells; 3.7 Origin definition by phase assignment. | |
505 | 8 | |a 4 The method of joint probability distribution functions, neighbourhoods, and representations4.1 Introduction; 4.2 Neighbourhoods and representations; 4.3 Representations of structure seminvariants; 4.4 Representation theory for structure invariants extended to isomorphous data; APPENDIX 4.A THE METHOD OF STRUCTURE FACTOR JOINT PROBABILITY DISTRIBUTION FUNCTIONS; 4.A.1 Introduction; 4.A.2 Multivariate distributions in centrosymmetric structures: the case of independent random variables. | |
505 | 8 | |a 4.A.3 Multivariate distributions in non-centrosymmetric structures: the case of independent random variables4.A.4 Simplified joint probability density functions in the absence of prior information; 4.A.5 The joint probability density function when some prior information is available; 4.A.6 The calculation of P(E) in the absence of prior information; 5 The probabilistic estimation of triplet and quartet invariants; 5.1 Introduction; 5.2 Estimation of the triplet structure invariant via its first representation: the P1 and the P. | |
520 | |a Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group ofscientists, but may be attained in a large number of laboratories around the world, even by young scientists. New prob. | ||
650 | 0 | |a Crystallography. |0 http://id.loc.gov/authorities/subjects/sh85034498 | |
650 | 2 | |a Crystallography |0 https://id.nlm.nih.gov/mesh/D003461 | |
650 | 6 | |a Cristallographie. | |
650 | 7 | |a SCIENCE |x Physics |x Crystallography. |2 bisacsh | |
650 | 7 | |a Crystallography |2 fast | |
776 | 0 | 8 | |i Print version: |a Giacovazzo, Carmelo. |t Phasing in crystallography |z 9780199686995 |w (OCoLC)858005011 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=666796 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 26803941 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1573044 | ||
938 | |a EBSCOhost |b EBSC |n 666796 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26803941 | ||
938 | |a YBP Library Services |b YANK |n 11376591 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn864714840 |
---|---|
_version_ | 1816882252433326080 |
adam_text | |
any_adam_object | |
author | Giacovazzo, Carmelo |
author_facet | Giacovazzo, Carmelo |
author_role | aut |
author_sort | Giacovazzo, Carmelo |
author_variant | c g cg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD945 |
callnumber-raw | QD945 |
callnumber-search | QD945 |
callnumber-sort | QD 3945 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Cover; Acknowledgements; Preface; Contents; Symbols and notation; 1 Fundamentals of crystallography; 1.1 Introduction; 1.2 Crystals and crystallographic symmetry in direct space; 1.3 The reciprocal space; 1.4 The structure factor; 1.5 Symmetry in reciprocal space; 1.5.1 Friedel law; 1.5.2 Effects of symmetry operators in reciprocal space; 1.5.3 Determination of reflections with restricted phase values; 1.5.4 Systematic absences; 1.6 The basic postulate of structural crystallography; 1.7 The legacy of crystallography; 2 Wilson statistics; 2.1 Introduction. 2.B.1 The algebraic form of the structure factor2.B.2 Structure factor statistics for centric and acentric space groups; APPENDIX 2.C THE DEBYE FORMULA; 3 The origin problem, invariants, and seminvariants; 3.1 Introduction; 3.2 Origin, phases, and symmetry operators; 3.3 The concept of structure invariant; 3.4 Allowed or permissible origins in primitive space groups; 3.5 The concept of structure seminvariant; 3.6 Allowed or permissible origins in centred cells; 3.7 Origin definition by phase assignment. 4 The method of joint probability distribution functions, neighbourhoods, and representations4.1 Introduction; 4.2 Neighbourhoods and representations; 4.3 Representations of structure seminvariants; 4.4 Representation theory for structure invariants extended to isomorphous data; APPENDIX 4.A THE METHOD OF STRUCTURE FACTOR JOINT PROBABILITY DISTRIBUTION FUNCTIONS; 4.A.1 Introduction; 4.A.2 Multivariate distributions in centrosymmetric structures: the case of independent random variables. 4.A.3 Multivariate distributions in non-centrosymmetric structures: the case of independent random variables4.A.4 Simplified joint probability density functions in the absence of prior information; 4.A.5 The joint probability density function when some prior information is available; 4.A.6 The calculation of P(E) in the absence of prior information; 5 The probabilistic estimation of triplet and quartet invariants; 5.1 Introduction; 5.2 Estimation of the triplet structure invariant via its first representation: the P1 and the P. |
ctrlnum | (OCoLC)864714840 |
dewey-full | 548 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 548 - Crystallography |
dewey-raw | 548 |
dewey-search | 548 |
dewey-sort | 3548 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04843cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn864714840</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131205s2013 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CQ$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">864383127</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191510618</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191510610</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306152429</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306152426</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199686995</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199686998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864714840</subfield><subfield code="z">(OCoLC)864383127</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">546493</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD945</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">548</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giacovazzo, Carmelo,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phasing in crystallography :</subfield><subfield code="b">a modern perspective /</subfield><subfield code="c">Carmelo Giacovazzo.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Acknowledgements; Preface; Contents; Symbols and notation; 1 Fundamentals of crystallography; 1.1 Introduction; 1.2 Crystals and crystallographic symmetry in direct space; 1.3 The reciprocal space; 1.4 The structure factor; 1.5 Symmetry in reciprocal space; 1.5.1 Friedel law; 1.5.2 Effects of symmetry operators in reciprocal space; 1.5.3 Determination of reflections with restricted phase values; 1.5.4 Systematic absences; 1.6 The basic postulate of structural crystallography; 1.7 The legacy of crystallography; 2 Wilson statistics; 2.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.B.1 The algebraic form of the structure factor2.B.2 Structure factor statistics for centric and acentric space groups; APPENDIX 2.C THE DEBYE FORMULA; 3 The origin problem, invariants, and seminvariants; 3.1 Introduction; 3.2 Origin, phases, and symmetry operators; 3.3 The concept of structure invariant; 3.4 Allowed or permissible origins in primitive space groups; 3.5 The concept of structure seminvariant; 3.6 Allowed or permissible origins in centred cells; 3.7 Origin definition by phase assignment.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 The method of joint probability distribution functions, neighbourhoods, and representations4.1 Introduction; 4.2 Neighbourhoods and representations; 4.3 Representations of structure seminvariants; 4.4 Representation theory for structure invariants extended to isomorphous data; APPENDIX 4.A THE METHOD OF STRUCTURE FACTOR JOINT PROBABILITY DISTRIBUTION FUNCTIONS; 4.A.1 Introduction; 4.A.2 Multivariate distributions in centrosymmetric structures: the case of independent random variables.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.A.3 Multivariate distributions in non-centrosymmetric structures: the case of independent random variables4.A.4 Simplified joint probability density functions in the absence of prior information; 4.A.5 The joint probability density function when some prior information is available; 4.A.6 The calculation of P(E) in the absence of prior information; 5 The probabilistic estimation of triplet and quartet invariants; 5.1 Introduction; 5.2 Estimation of the triplet structure invariant via its first representation: the P1 and the P.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group ofscientists, but may be attained in a large number of laboratories around the world, even by young scientists. New prob.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Crystallography.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85034498</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Crystallography</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D003461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Cristallographie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Crystallography.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crystallography</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Giacovazzo, Carmelo.</subfield><subfield code="t">Phasing in crystallography</subfield><subfield code="z">9780199686995</subfield><subfield code="w">(OCoLC)858005011</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=666796</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26803941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1573044</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">666796</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26803941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11376591</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn864714840 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:40Z |
institution | BVB |
isbn | 9780191510618 0191510610 1306152429 9781306152426 |
language | English |
oclc_num | 864714840 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Giacovazzo, Carmelo, author. Phasing in crystallography : a modern perspective / Carmelo Giacovazzo. Oxford : Oxford University Press, 2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references. Print version record. Cover; Acknowledgements; Preface; Contents; Symbols and notation; 1 Fundamentals of crystallography; 1.1 Introduction; 1.2 Crystals and crystallographic symmetry in direct space; 1.3 The reciprocal space; 1.4 The structure factor; 1.5 Symmetry in reciprocal space; 1.5.1 Friedel law; 1.5.2 Effects of symmetry operators in reciprocal space; 1.5.3 Determination of reflections with restricted phase values; 1.5.4 Systematic absences; 1.6 The basic postulate of structural crystallography; 1.7 The legacy of crystallography; 2 Wilson statistics; 2.1 Introduction. 2.B.1 The algebraic form of the structure factor2.B.2 Structure factor statistics for centric and acentric space groups; APPENDIX 2.C THE DEBYE FORMULA; 3 The origin problem, invariants, and seminvariants; 3.1 Introduction; 3.2 Origin, phases, and symmetry operators; 3.3 The concept of structure invariant; 3.4 Allowed or permissible origins in primitive space groups; 3.5 The concept of structure seminvariant; 3.6 Allowed or permissible origins in centred cells; 3.7 Origin definition by phase assignment. 4 The method of joint probability distribution functions, neighbourhoods, and representations4.1 Introduction; 4.2 Neighbourhoods and representations; 4.3 Representations of structure seminvariants; 4.4 Representation theory for structure invariants extended to isomorphous data; APPENDIX 4.A THE METHOD OF STRUCTURE FACTOR JOINT PROBABILITY DISTRIBUTION FUNCTIONS; 4.A.1 Introduction; 4.A.2 Multivariate distributions in centrosymmetric structures: the case of independent random variables. 4.A.3 Multivariate distributions in non-centrosymmetric structures: the case of independent random variables4.A.4 Simplified joint probability density functions in the absence of prior information; 4.A.5 The joint probability density function when some prior information is available; 4.A.6 The calculation of P(E) in the absence of prior information; 5 The probabilistic estimation of triplet and quartet invariants; 5.1 Introduction; 5.2 Estimation of the triplet structure invariant via its first representation: the P1 and the P. Modern crystallographic methods originate from the synergy of two main research streams, the small-molecule and the macro-molecular streams. The first stream was able to definitively solve the phase problem for molecules up to 200 atoms in the asymmetric unit. The achievements obtained by the macromolecular stream are also impressive. A huge number of protein structures have been deposited in the Protein Data Bank. The solution of them is no longer reserved to an elite group ofscientists, but may be attained in a large number of laboratories around the world, even by young scientists. New prob. Crystallography. http://id.loc.gov/authorities/subjects/sh85034498 Crystallography https://id.nlm.nih.gov/mesh/D003461 Cristallographie. SCIENCE Physics Crystallography. bisacsh Crystallography fast Print version: Giacovazzo, Carmelo. Phasing in crystallography 9780199686995 (OCoLC)858005011 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=666796 Volltext |
spellingShingle | Giacovazzo, Carmelo Phasing in crystallography : a modern perspective / Cover; Acknowledgements; Preface; Contents; Symbols and notation; 1 Fundamentals of crystallography; 1.1 Introduction; 1.2 Crystals and crystallographic symmetry in direct space; 1.3 The reciprocal space; 1.4 The structure factor; 1.5 Symmetry in reciprocal space; 1.5.1 Friedel law; 1.5.2 Effects of symmetry operators in reciprocal space; 1.5.3 Determination of reflections with restricted phase values; 1.5.4 Systematic absences; 1.6 The basic postulate of structural crystallography; 1.7 The legacy of crystallography; 2 Wilson statistics; 2.1 Introduction. 2.B.1 The algebraic form of the structure factor2.B.2 Structure factor statistics for centric and acentric space groups; APPENDIX 2.C THE DEBYE FORMULA; 3 The origin problem, invariants, and seminvariants; 3.1 Introduction; 3.2 Origin, phases, and symmetry operators; 3.3 The concept of structure invariant; 3.4 Allowed or permissible origins in primitive space groups; 3.5 The concept of structure seminvariant; 3.6 Allowed or permissible origins in centred cells; 3.7 Origin definition by phase assignment. 4 The method of joint probability distribution functions, neighbourhoods, and representations4.1 Introduction; 4.2 Neighbourhoods and representations; 4.3 Representations of structure seminvariants; 4.4 Representation theory for structure invariants extended to isomorphous data; APPENDIX 4.A THE METHOD OF STRUCTURE FACTOR JOINT PROBABILITY DISTRIBUTION FUNCTIONS; 4.A.1 Introduction; 4.A.2 Multivariate distributions in centrosymmetric structures: the case of independent random variables. 4.A.3 Multivariate distributions in non-centrosymmetric structures: the case of independent random variables4.A.4 Simplified joint probability density functions in the absence of prior information; 4.A.5 The joint probability density function when some prior information is available; 4.A.6 The calculation of P(E) in the absence of prior information; 5 The probabilistic estimation of triplet and quartet invariants; 5.1 Introduction; 5.2 Estimation of the triplet structure invariant via its first representation: the P1 and the P. Crystallography. http://id.loc.gov/authorities/subjects/sh85034498 Crystallography https://id.nlm.nih.gov/mesh/D003461 Cristallographie. SCIENCE Physics Crystallography. bisacsh Crystallography fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85034498 https://id.nlm.nih.gov/mesh/D003461 |
title | Phasing in crystallography : a modern perspective / |
title_auth | Phasing in crystallography : a modern perspective / |
title_exact_search | Phasing in crystallography : a modern perspective / |
title_full | Phasing in crystallography : a modern perspective / Carmelo Giacovazzo. |
title_fullStr | Phasing in crystallography : a modern perspective / Carmelo Giacovazzo. |
title_full_unstemmed | Phasing in crystallography : a modern perspective / Carmelo Giacovazzo. |
title_short | Phasing in crystallography : |
title_sort | phasing in crystallography a modern perspective |
title_sub | a modern perspective / |
topic | Crystallography. http://id.loc.gov/authorities/subjects/sh85034498 Crystallography https://id.nlm.nih.gov/mesh/D003461 Cristallographie. SCIENCE Physics Crystallography. bisacsh Crystallography fast |
topic_facet | Crystallography. Crystallography Cristallographie. SCIENCE Physics Crystallography. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=666796 |
work_keys_str_mv | AT giacovazzocarmelo phasingincrystallographyamodernperspective |