Machine learning with R :: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications /
Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2013.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or. |
Beschreibung: | 1 online resource (vii, 375 pages) : illustrations |
ISBN: | 9781782162155 1782162151 9781461949657 1461949653 1306070333 9781306070331 9781680153583 1680153587 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn862380117 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131108t20132013enka of 001 0 eng d | ||
040 | |a IDEBK |b eng |e rda |e pn |c IDEBK |d EBLCP |d MHW |d N$T |d GZM |d E7B |d MEAUC |d UMI |d YDXCP |d COO |d DEBBG |d DEBSZ |d OCLCQ |d OCLCF |d KNOVL |d OCLCQ |d OCL |d OCLCQ |d AGLDB |d ICA |d LIP |d ZCU |d MERUC |d OCLCQ |d ESU |d OCLCQ |d JBG |d D6H |d VTS |d CEF |d ICG |d NLE |d DKU |d UKMGB |d OCLCQ |d STF |d UAB |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d OCL |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
016 | 7 | |a 018005240 |2 Uk | |
019 | |a 867904123 |a 869836286 | ||
020 | |a 9781782162155 |q (electronic bk.) | ||
020 | |a 1782162151 |q (electronic bk.) | ||
020 | |a 9781461949657 |q (electronic bk.) | ||
020 | |a 1461949653 |q (electronic bk.) | ||
020 | |a 1306070333 |q (electronic bk.) | ||
020 | |a 9781306070331 |q (electronic bk.) | ||
020 | |a 9781680153583 |q (electronic bk.) | ||
020 | |a 1680153587 |q (electronic bk.) | ||
020 | |z 1782162143 | ||
020 | |z 9781782162148 | ||
035 | |a (OCoLC)862380117 |z (OCoLC)867904123 |z (OCoLC)869836286 | ||
037 | |a CL0500000359 |b Safari Books Online | ||
050 | 4 | |a QA76.9.A25 |b L384 2013 | |
072 | 7 | |a COM |x 037000 |2 bisacsh | |
072 | 7 | |a COM |x 000672 |2 bisacsh | |
082 | 7 | |a 005.8 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lantz, Brett, |e author. |0 http://id.loc.gov/authorities/names/no2011002944 | |
245 | 1 | 0 | |a Machine learning with R : |b learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / |c Brett Lantz. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2013. | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (vii, 375 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Open source. Community experience distilled | |
588 | 0 | |a Print version record. | |
520 | |a Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or. | ||
505 | 0 | |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Ethical considerations; How do machines learn?; Abstraction and knowledge representation; Generalization; Assessing the success of learning; Steps to apply machine learning to your data; Choosing a machine learning algorithm; Thinking about the input data; Thinking about types of machine learning algorithms; Matching your data to an appropriate algorithm. | |
505 | 8 | |a Using R for machine learningInstalling and loading R packages; Installing an R package; Installing a package using the point-and-click interface; Loading an R package; Summary; Chapter 2: Managing and Understanding Data; R data structures; Vectors; Factors; Lists; Data frames; Matrixes and arrays; Managing data with R; Saving and loading R data structures; Importing and saving data from CSV files; Importing data from SQL databases; Exploring and understanding data; Exploring the structure of data; Exploring numeric variables; Measuring the central tendency -- mean and median. | |
505 | 8 | |a Measuring spread -- quartiles and the five-number summaryVisualizing numeric variables -- boxplots; Visualizing numeric variables -- histograms; Understanding numeric data -- uniform and normal distributions; Measuring spread -- variance and standard deviation; Exploring categorical variables; Measuring the central tendency -- the mode; Exploring relationships between variables; Visualizing relationships -- scatterplots; Examining relationships -- two-way cross-tabulations; Summary; Chapter 3: Lazy Learning -- Classification using Nearest Neighbors; Understanding classification using nearest neighbors. | |
505 | 8 | |a The kNN algorithmCalculating distance; Choosing an appropriate k; Preparing data for use with kNN; Why is the kNN algorithm lazy?; Diagnosing breast cancer with the kNN algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Transformation -- normalizing numeric data; Data preparation -- creating training and test datasets; Step 3 -- training a model on the data; Step 4 -- evaluating model performance; Step 5 -- improving model performance; Transformation -- z-score standardization; Testing alternative values of k; Summary. | |
505 | 8 | |a Chapter 4: Probabilistic Learning -- Classification using Naive BayesUnderstanding naive Bayes; Basic concepts of Bayesian methods; Probability; Joint probability; Conditional probability with Bayes' theorem; The naive Bayes algorithm; The naive Bayes classification; The Laplace estimator; Using numeric features with naive Bayes; Example -- filtering mobile phone spam with the naive Bayes algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Data preparation -- processing text data for analysis; Data preparation -- creating training and test datasets. | |
505 | 8 | |a Visualizing text data -- word clouds. | |
650 | 0 | |a R (Computer program language) |v Handbooks, manuals, etc. | |
650 | 0 | |a Machine learning |x Statistical methods |v Handbooks, manuals, etc. | |
650 | 6 | |a R (Langage de programmation) |v Guides, manuels, etc. | |
650 | 6 | |a Apprentissage automatique |x Méthodes statistiques |v Guides, manuels, etc. | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Programming Languages. |2 bisacsh | |
650 | 7 | |a Machine learning |x Statistical methods |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
655 | 7 | |a handbooks. |2 aat | |
655 | 7 | |a Handbooks and manuals |2 fast | |
655 | 7 | |a Handbooks and manuals. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026109 | |
655 | 7 | |a Guides et manuels. |2 rvmgf | |
758 | |i has work: |a Machine learning with R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFYBpm6gXwFpK8gRkRHYP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lantz, Brett. |t Machine learning with R. |d Birmingham : Packt Publishing Ltd., 2013 |z 9781782162148 |w (OCoLC)864393286 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=656222 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26849432 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1343653 | ||
938 | |a ebrary |b EBRY |n ebr10794279 | ||
938 | |a EBSCOhost |b EBSC |n 656222 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26536000 | ||
938 | |a YBP Library Services |b YANK |n 11318836 | ||
938 | |a YBP Library Services |b YANK |n 11319634 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn862380117 |
---|---|
_version_ | 1816882250133798913 |
adam_text | |
any_adam_object | |
author | Lantz, Brett |
author_GND | http://id.loc.gov/authorities/names/no2011002944 |
author_facet | Lantz, Brett |
author_role | aut |
author_sort | Lantz, Brett |
author_variant | b l bl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.A25 L384 2013 |
callnumber-search | QA76.9.A25 L384 2013 |
callnumber-sort | QA 276.9 A25 L384 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Ethical considerations; How do machines learn?; Abstraction and knowledge representation; Generalization; Assessing the success of learning; Steps to apply machine learning to your data; Choosing a machine learning algorithm; Thinking about the input data; Thinking about types of machine learning algorithms; Matching your data to an appropriate algorithm. Using R for machine learningInstalling and loading R packages; Installing an R package; Installing a package using the point-and-click interface; Loading an R package; Summary; Chapter 2: Managing and Understanding Data; R data structures; Vectors; Factors; Lists; Data frames; Matrixes and arrays; Managing data with R; Saving and loading R data structures; Importing and saving data from CSV files; Importing data from SQL databases; Exploring and understanding data; Exploring the structure of data; Exploring numeric variables; Measuring the central tendency -- mean and median. Measuring spread -- quartiles and the five-number summaryVisualizing numeric variables -- boxplots; Visualizing numeric variables -- histograms; Understanding numeric data -- uniform and normal distributions; Measuring spread -- variance and standard deviation; Exploring categorical variables; Measuring the central tendency -- the mode; Exploring relationships between variables; Visualizing relationships -- scatterplots; Examining relationships -- two-way cross-tabulations; Summary; Chapter 3: Lazy Learning -- Classification using Nearest Neighbors; Understanding classification using nearest neighbors. The kNN algorithmCalculating distance; Choosing an appropriate k; Preparing data for use with kNN; Why is the kNN algorithm lazy?; Diagnosing breast cancer with the kNN algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Transformation -- normalizing numeric data; Data preparation -- creating training and test datasets; Step 3 -- training a model on the data; Step 4 -- evaluating model performance; Step 5 -- improving model performance; Transformation -- z-score standardization; Testing alternative values of k; Summary. Chapter 4: Probabilistic Learning -- Classification using Naive BayesUnderstanding naive Bayes; Basic concepts of Bayesian methods; Probability; Joint probability; Conditional probability with Bayes' theorem; The naive Bayes algorithm; The naive Bayes classification; The Laplace estimator; Using numeric features with naive Bayes; Example -- filtering mobile phone spam with the naive Bayes algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Data preparation -- processing text data for analysis; Data preparation -- creating training and test datasets. Visualizing text data -- word clouds. |
ctrlnum | (OCoLC)862380117 |
dewey-full | 005.8 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8 |
dewey-search | 005.8 |
dewey-sort | 15.8 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07308cam a2200829 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn862380117</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131108t20132013enka of 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">N$T</subfield><subfield code="d">GZM</subfield><subfield code="d">E7B</subfield><subfield code="d">MEAUC</subfield><subfield code="d">UMI</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">KNOVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ICA</subfield><subfield code="d">LIP</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ESU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">ICG</subfield><subfield code="d">NLE</subfield><subfield code="d">DKU</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">UAB</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018005240</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">867904123</subfield><subfield code="a">869836286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782162155</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782162151</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461949657</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1461949653</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306070333</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306070331</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781680153583</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1680153587</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1782162143</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781782162148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862380117</subfield><subfield code="z">(OCoLC)867904123</subfield><subfield code="z">(OCoLC)869836286</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000359</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.A25</subfield><subfield code="b">L384 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000672</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.8</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lantz, Brett,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011002944</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with R :</subfield><subfield code="b">learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications /</subfield><subfield code="c">Brett Lantz.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 375 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Open source. Community experience distilled</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Ethical considerations; How do machines learn?; Abstraction and knowledge representation; Generalization; Assessing the success of learning; Steps to apply machine learning to your data; Choosing a machine learning algorithm; Thinking about the input data; Thinking about types of machine learning algorithms; Matching your data to an appropriate algorithm.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using R for machine learningInstalling and loading R packages; Installing an R package; Installing a package using the point-and-click interface; Loading an R package; Summary; Chapter 2: Managing and Understanding Data; R data structures; Vectors; Factors; Lists; Data frames; Matrixes and arrays; Managing data with R; Saving and loading R data structures; Importing and saving data from CSV files; Importing data from SQL databases; Exploring and understanding data; Exploring the structure of data; Exploring numeric variables; Measuring the central tendency -- mean and median.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Measuring spread -- quartiles and the five-number summaryVisualizing numeric variables -- boxplots; Visualizing numeric variables -- histograms; Understanding numeric data -- uniform and normal distributions; Measuring spread -- variance and standard deviation; Exploring categorical variables; Measuring the central tendency -- the mode; Exploring relationships between variables; Visualizing relationships -- scatterplots; Examining relationships -- two-way cross-tabulations; Summary; Chapter 3: Lazy Learning -- Classification using Nearest Neighbors; Understanding classification using nearest neighbors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The kNN algorithmCalculating distance; Choosing an appropriate k; Preparing data for use with kNN; Why is the kNN algorithm lazy?; Diagnosing breast cancer with the kNN algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Transformation -- normalizing numeric data; Data preparation -- creating training and test datasets; Step 3 -- training a model on the data; Step 4 -- evaluating model performance; Step 5 -- improving model performance; Transformation -- z-score standardization; Testing alternative values of k; Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4: Probabilistic Learning -- Classification using Naive BayesUnderstanding naive Bayes; Basic concepts of Bayesian methods; Probability; Joint probability; Conditional probability with Bayes' theorem; The naive Bayes algorithm; The naive Bayes classification; The Laplace estimator; Using numeric features with naive Bayes; Example -- filtering mobile phone spam with the naive Bayes algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Data preparation -- processing text data for analysis; Data preparation -- creating training and test datasets.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Visualizing text data -- word clouds.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="v">Handbooks, manuals, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield><subfield code="x">Statistical methods</subfield><subfield code="v">Handbooks, manuals, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield><subfield code="v">Guides, manuels, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique</subfield><subfield code="x">Méthodes statistiques</subfield><subfield code="v">Guides, manuels, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming Languages.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">handbooks.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Handbooks and manuals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Handbooks and manuals.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026109</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Guides et manuels.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Machine learning with R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFYBpm6gXwFpK8gRkRHYP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lantz, Brett.</subfield><subfield code="t">Machine learning with R.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd., 2013</subfield><subfield code="z">9781782162148</subfield><subfield code="w">(OCoLC)864393286</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=656222</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26849432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1343653</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10794279</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">656222</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26536000</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11318836</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11319634</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | handbooks. aat Handbooks and manuals fast Handbooks and manuals. lcgft http://id.loc.gov/authorities/genreForms/gf2014026109 Guides et manuels. rvmgf |
genre_facet | handbooks. Handbooks and manuals Handbooks and manuals. Guides et manuels. |
id | ZDB-4-EBA-ocn862380117 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:37Z |
institution | BVB |
isbn | 9781782162155 1782162151 9781461949657 1461949653 1306070333 9781306070331 9781680153583 1680153587 |
language | English |
oclc_num | 862380117 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 375 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Open source. Community experience distilled |
spelling | Lantz, Brett, author. http://id.loc.gov/authorities/names/no2011002944 Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / Brett Lantz. Birmingham, UK : Packt Publishing, 2013. ©2013 1 online resource (vii, 375 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Open source. Community experience distilled Print version record. Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or. Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Ethical considerations; How do machines learn?; Abstraction and knowledge representation; Generalization; Assessing the success of learning; Steps to apply machine learning to your data; Choosing a machine learning algorithm; Thinking about the input data; Thinking about types of machine learning algorithms; Matching your data to an appropriate algorithm. Using R for machine learningInstalling and loading R packages; Installing an R package; Installing a package using the point-and-click interface; Loading an R package; Summary; Chapter 2: Managing and Understanding Data; R data structures; Vectors; Factors; Lists; Data frames; Matrixes and arrays; Managing data with R; Saving and loading R data structures; Importing and saving data from CSV files; Importing data from SQL databases; Exploring and understanding data; Exploring the structure of data; Exploring numeric variables; Measuring the central tendency -- mean and median. Measuring spread -- quartiles and the five-number summaryVisualizing numeric variables -- boxplots; Visualizing numeric variables -- histograms; Understanding numeric data -- uniform and normal distributions; Measuring spread -- variance and standard deviation; Exploring categorical variables; Measuring the central tendency -- the mode; Exploring relationships between variables; Visualizing relationships -- scatterplots; Examining relationships -- two-way cross-tabulations; Summary; Chapter 3: Lazy Learning -- Classification using Nearest Neighbors; Understanding classification using nearest neighbors. The kNN algorithmCalculating distance; Choosing an appropriate k; Preparing data for use with kNN; Why is the kNN algorithm lazy?; Diagnosing breast cancer with the kNN algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Transformation -- normalizing numeric data; Data preparation -- creating training and test datasets; Step 3 -- training a model on the data; Step 4 -- evaluating model performance; Step 5 -- improving model performance; Transformation -- z-score standardization; Testing alternative values of k; Summary. Chapter 4: Probabilistic Learning -- Classification using Naive BayesUnderstanding naive Bayes; Basic concepts of Bayesian methods; Probability; Joint probability; Conditional probability with Bayes' theorem; The naive Bayes algorithm; The naive Bayes classification; The Laplace estimator; Using numeric features with naive Bayes; Example -- filtering mobile phone spam with the naive Bayes algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Data preparation -- processing text data for analysis; Data preparation -- creating training and test datasets. Visualizing text data -- word clouds. R (Computer program language) Handbooks, manuals, etc. Machine learning Statistical methods Handbooks, manuals, etc. R (Langage de programmation) Guides, manuels, etc. Apprentissage automatique Méthodes statistiques Guides, manuels, etc. COMPUTERS Machine Theory. bisacsh COMPUTERS Programming Languages. bisacsh Machine learning Statistical methods fast R (Computer program language) fast handbooks. aat Handbooks and manuals fast Handbooks and manuals. lcgft http://id.loc.gov/authorities/genreForms/gf2014026109 Guides et manuels. rvmgf has work: Machine learning with R (Text) https://id.oclc.org/worldcat/entity/E39PCGFYBpm6gXwFpK8gRkRHYP https://id.oclc.org/worldcat/ontology/hasWork Print version: Lantz, Brett. Machine learning with R. Birmingham : Packt Publishing Ltd., 2013 9781782162148 (OCoLC)864393286 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=656222 Volltext |
spellingShingle | Lantz, Brett Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / Community experience distilled. Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introducing Machine Learning; The origins of machine learning; Uses and abuses of machine learning; Ethical considerations; How do machines learn?; Abstraction and knowledge representation; Generalization; Assessing the success of learning; Steps to apply machine learning to your data; Choosing a machine learning algorithm; Thinking about the input data; Thinking about types of machine learning algorithms; Matching your data to an appropriate algorithm. Using R for machine learningInstalling and loading R packages; Installing an R package; Installing a package using the point-and-click interface; Loading an R package; Summary; Chapter 2: Managing and Understanding Data; R data structures; Vectors; Factors; Lists; Data frames; Matrixes and arrays; Managing data with R; Saving and loading R data structures; Importing and saving data from CSV files; Importing data from SQL databases; Exploring and understanding data; Exploring the structure of data; Exploring numeric variables; Measuring the central tendency -- mean and median. Measuring spread -- quartiles and the five-number summaryVisualizing numeric variables -- boxplots; Visualizing numeric variables -- histograms; Understanding numeric data -- uniform and normal distributions; Measuring spread -- variance and standard deviation; Exploring categorical variables; Measuring the central tendency -- the mode; Exploring relationships between variables; Visualizing relationships -- scatterplots; Examining relationships -- two-way cross-tabulations; Summary; Chapter 3: Lazy Learning -- Classification using Nearest Neighbors; Understanding classification using nearest neighbors. The kNN algorithmCalculating distance; Choosing an appropriate k; Preparing data for use with kNN; Why is the kNN algorithm lazy?; Diagnosing breast cancer with the kNN algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Transformation -- normalizing numeric data; Data preparation -- creating training and test datasets; Step 3 -- training a model on the data; Step 4 -- evaluating model performance; Step 5 -- improving model performance; Transformation -- z-score standardization; Testing alternative values of k; Summary. Chapter 4: Probabilistic Learning -- Classification using Naive BayesUnderstanding naive Bayes; Basic concepts of Bayesian methods; Probability; Joint probability; Conditional probability with Bayes' theorem; The naive Bayes algorithm; The naive Bayes classification; The Laplace estimator; Using numeric features with naive Bayes; Example -- filtering mobile phone spam with the naive Bayes algorithm; Step 1 -- collecting data; Step 2 -- exploring and preparing the data; Data preparation -- processing text data for analysis; Data preparation -- creating training and test datasets. Visualizing text data -- word clouds. R (Computer program language) Handbooks, manuals, etc. Machine learning Statistical methods Handbooks, manuals, etc. R (Langage de programmation) Guides, manuels, etc. Apprentissage automatique Méthodes statistiques Guides, manuels, etc. COMPUTERS Machine Theory. bisacsh COMPUTERS Programming Languages. bisacsh Machine learning Statistical methods fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/genreForms/gf2014026109 |
title | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / |
title_auth | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / |
title_exact_search | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / |
title_full | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / Brett Lantz. |
title_fullStr | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / Brett Lantz. |
title_full_unstemmed | Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / Brett Lantz. |
title_short | Machine learning with R : |
title_sort | machine learning with r learn how to use r to apply powerful machine learning methods and gain an insight into real world applications |
title_sub | learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications / |
topic | R (Computer program language) Handbooks, manuals, etc. Machine learning Statistical methods Handbooks, manuals, etc. R (Langage de programmation) Guides, manuels, etc. Apprentissage automatique Méthodes statistiques Guides, manuels, etc. COMPUTERS Machine Theory. bisacsh COMPUTERS Programming Languages. bisacsh Machine learning Statistical methods fast R (Computer program language) fast |
topic_facet | R (Computer program language) Handbooks, manuals, etc. Machine learning Statistical methods Handbooks, manuals, etc. R (Langage de programmation) Guides, manuels, etc. Apprentissage automatique Méthodes statistiques Guides, manuels, etc. COMPUTERS Machine Theory. COMPUTERS Programming Languages. Machine learning Statistical methods R (Computer program language) handbooks. Handbooks and manuals Handbooks and manuals. Guides et manuels. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=656222 |
work_keys_str_mv | AT lantzbrett machinelearningwithrlearnhowtousertoapplypowerfulmachinelearningmethodsandgainaninsightintorealworldapplications |