Canonical Ramsey theory on Polish spaces /:
This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analy...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2013.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
202. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research. |
Beschreibung: | 1 online resource (viii, 269 pages) |
Bibliographie: | Includes bibliographical references (pages 264-267) and index. |
ISBN: | 9781107416604 1107416604 9781139208666 1139208667 9781306071963 1306071968 9781107419247 1107419247 9781107420472 1107420474 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861693020 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131029s2013 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d YDXCP |d CAMBR |d OCLCF |d N$T |d CDX |d EBLCP |d NMC |d COO |d DEBSZ |d OCLCQ |d BUF |d UAB |d OCLCQ |d AU@ |d UKAHL |d OCLCQ |d S8J |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d S9M |d SFB |d OCLCQ |d SXB | ||
019 | |a 862114240 |a 863821791 | ||
020 | |a 9781107416604 |q (electronic bk.) | ||
020 | |a 1107416604 |q (electronic bk.) | ||
020 | |a 9781139208666 |q (electronic bk.) | ||
020 | |a 1139208667 |q (electronic bk.) | ||
020 | |a 9781306071963 |q (MyiLibrary) | ||
020 | |a 1306071968 |q (MyiLibrary) | ||
020 | |a 9781107419247 | ||
020 | |a 1107419247 | ||
020 | |a 9781107420472 |q (e-book) | ||
020 | |a 1107420474 |q (e-book) | ||
020 | |z 9781107026858 | ||
020 | |z 1107026857 | ||
035 | |a (OCoLC)861693020 |z (OCoLC)862114240 |z (OCoLC)863821791 | ||
037 | |a 538447 |b MIL | ||
050 | 4 | |a QA248 |b .K356 2013eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.322 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Kanoveĭ, V. G. |q (Vladimir Grigorʹevich) |0 http://id.loc.gov/authorities/names/n85358241 | |
245 | 1 | 0 | |a Canonical Ramsey theory on Polish spaces / |c Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2013. | |
300 | |a 1 online resource (viii, 269 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 202 | |
504 | |a Includes bibliographical references (pages 264-267) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. | |
520 | |a This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research. | ||
650 | 0 | |a Set theory. |0 http://id.loc.gov/authorities/subjects/sh85120387 | |
650 | 0 | |a Ramsey theory. |0 http://id.loc.gov/authorities/subjects/sh85111302 | |
650 | 0 | |a Polish spaces (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh91000874 | |
650 | 6 | |a Théorie des ensembles. | |
650 | 6 | |a Théorie de Ramsey. | |
650 | 6 | |a Espaces polonais (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Teoría de juegos |2 embne | |
650 | 7 | |a Polish spaces (Mathematics) |2 fast | |
650 | 7 | |a Ramsey theory |2 fast | |
650 | 7 | |a Set theory |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Sabok, Marcin. | |
700 | 1 | |a Zapletal, Jindřich, |d 1969- |0 http://id.loc.gov/authorities/names/n2003013917 | |
776 | 0 | 8 | |i Print version: |a Kanoveĭ, V.G. (Vladimir Grigorʹevich). |t Canonical Ramsey theory on Polish spaces |z 9781107026858 |w (OCoLC)847601579 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 202. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH34206182 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385910 | ||
938 | |a Coutts Information Services |b COUT |n 26536575 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1394548 | ||
938 | |a EBSCOhost |b EBSC |n 622090 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26536575 | ||
938 | |a YBP Library Services |b YANK |n 11577276 | ||
938 | |a YBP Library Services |b YANK |n 11230721 | ||
938 | |a YBP Library Services |b YANK |n 11203859 | ||
938 | |a YBP Library Services |b YANK |n 12630558 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861693020 |
---|---|
_version_ | 1813903625606397952 |
adam_text | |
any_adam_object | |
author | Kanoveĭ, V. G. (Vladimir Grigorʹevich) |
author2 | Sabok, Marcin Zapletal, Jindřich, 1969- |
author2_role | |
author2_variant | m s ms j z jz |
author_GND | http://id.loc.gov/authorities/names/n85358241 http://id.loc.gov/authorities/names/n2003013917 |
author_facet | Kanoveĭ, V. G. (Vladimir Grigorʹevich) Sabok, Marcin Zapletal, Jindřich, 1969- |
author_role | |
author_sort | Kanoveĭ, V. G. |
author_variant | v g k vg vgk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 .K356 2013eb |
callnumber-search | QA248 .K356 2013eb |
callnumber-sort | QA 3248 K356 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. |
ctrlnum | (OCoLC)861693020 |
dewey-full | 511.322 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.322 |
dewey-search | 511.322 |
dewey-sort | 3511.322 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04725cam a2200817 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861693020</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131029s2013 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">NMC</subfield><subfield code="d">COO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUF</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S8J</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">862114240</subfield><subfield code="a">863821791</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107416604</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107416604</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139208666</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139208667</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306071963</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306071968</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107419247</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107419247</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107420472</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107420474</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107026858</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107026857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861693020</subfield><subfield code="z">(OCoLC)862114240</subfield><subfield code="z">(OCoLC)863821791</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">538447</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA248</subfield><subfield code="b">.K356 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.322</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanoveĭ, V. G.</subfield><subfield code="q">(Vladimir Grigorʹevich)</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85358241</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Canonical Ramsey theory on Polish spaces /</subfield><subfield code="c">Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 269 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">202</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 264-267) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Set theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120387</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ramsey theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85111302</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polish spaces (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91000874</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des ensembles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de Ramsey.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces polonais (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoría de juegos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polish spaces (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ramsey theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabok, Marcin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zapletal, Jindřich,</subfield><subfield code="d">1969-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003013917</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kanoveĭ, V.G. (Vladimir Grigorʹevich).</subfield><subfield code="t">Canonical Ramsey theory on Polish spaces</subfield><subfield code="z">9781107026858</subfield><subfield code="w">(OCoLC)847601579</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">202.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34206182</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385910</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26536575</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1394548</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">622090</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26536575</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11577276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11230721</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11203859</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12630558</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn861693020 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:40Z |
institution | BVB |
isbn | 9781107416604 1107416604 9781139208666 1139208667 9781306071963 1306071968 9781107419247 1107419247 9781107420472 1107420474 |
language | English |
oclc_num | 861693020 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (viii, 269 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Kanoveĭ, V. G. (Vladimir Grigorʹevich) http://id.loc.gov/authorities/names/n85358241 Canonical Ramsey theory on Polish spaces / Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. Cambridge : Cambridge University Press, 2013. 1 online resource (viii, 269 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 202 Includes bibliographical references (pages 264-267) and index. Print version record. Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Polish spaces (Mathematics) http://id.loc.gov/authorities/subjects/sh91000874 Théorie des ensembles. Théorie de Ramsey. Espaces polonais (Mathématiques) MATHEMATICS General. bisacsh Teoría de juegos embne Polish spaces (Mathematics) fast Ramsey theory fast Set theory fast Electronic book. Sabok, Marcin. Zapletal, Jindřich, 1969- http://id.loc.gov/authorities/names/n2003013917 Print version: Kanoveĭ, V.G. (Vladimir Grigorʹevich). Canonical Ramsey theory on Polish spaces 9781107026858 (OCoLC)847601579 Cambridge tracts in mathematics ; 202. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090 Volltext |
spellingShingle | Kanoveĭ, V. G. (Vladimir Grigorʹevich) Canonical Ramsey theory on Polish spaces / Cambridge tracts in mathematics ; Introduction -- Background facts -- Analytic equivalence relations and models of set theory -- Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Polish spaces (Mathematics) http://id.loc.gov/authorities/subjects/sh91000874 Théorie des ensembles. Théorie de Ramsey. Espaces polonais (Mathématiques) MATHEMATICS General. bisacsh Teoría de juegos embne Polish spaces (Mathematics) fast Ramsey theory fast Set theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85120387 http://id.loc.gov/authorities/subjects/sh85111302 http://id.loc.gov/authorities/subjects/sh91000874 |
title | Canonical Ramsey theory on Polish spaces / |
title_auth | Canonical Ramsey theory on Polish spaces / |
title_exact_search | Canonical Ramsey theory on Polish spaces / |
title_full | Canonical Ramsey theory on Polish spaces / Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. |
title_fullStr | Canonical Ramsey theory on Polish spaces / Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. |
title_full_unstemmed | Canonical Ramsey theory on Polish spaces / Vladimir Kanovei, Marcin Sabok, Jindřich Zapletal. |
title_short | Canonical Ramsey theory on Polish spaces / |
title_sort | canonical ramsey theory on polish spaces |
topic | Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Polish spaces (Mathematics) http://id.loc.gov/authorities/subjects/sh91000874 Théorie des ensembles. Théorie de Ramsey. Espaces polonais (Mathématiques) MATHEMATICS General. bisacsh Teoría de juegos embne Polish spaces (Mathematics) fast Ramsey theory fast Set theory fast |
topic_facet | Set theory. Ramsey theory. Polish spaces (Mathematics) Théorie des ensembles. Théorie de Ramsey. Espaces polonais (Mathématiques) MATHEMATICS General. Teoría de juegos Ramsey theory Set theory Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=622090 |
work_keys_str_mv | AT kanoveivg canonicalramseytheoryonpolishspaces AT sabokmarcin canonicalramseytheoryonpolishspaces AT zapletaljindrich canonicalramseytheoryonpolishspaces |