Hilbert transforms.: Vol. 1 /
The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the su...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2009.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
volume 124. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications. |
Beschreibung: | 1 online resource (xxxviii, 858 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 745-823) and indexes. |
ISBN: | 9781107089792 1107089794 9781107096080 1107096081 9781107095045 1107095042 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861692521 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131029s2009 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d OCLCF |d OCLCQ |d YDX |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 862101321 |a 862101383 |a 964928108 | ||
020 | |a 9781107089792 |q (electronic bk.) | ||
020 | |a 1107089794 |q (electronic bk.) | ||
020 | |a 9781107096080 |q (electronic bk.) | ||
020 | |a 1107096081 |q (electronic bk.) | ||
020 | |a 9781107095045 |q (electronic bk.) | ||
020 | |a 1107095042 |q (electronic bk.) | ||
020 | |z 9780521887625 | ||
020 | |z 0521887623 | ||
020 | |z 0521517206 | ||
020 | |z 9780521517201 | ||
035 | |a (OCoLC)861692521 |z (OCoLC)862101321 |z (OCoLC)862101383 |z (OCoLC)964928108 | ||
050 | 4 | |a QA432 |b .K56 2009eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.723 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a King, Frederick W., |d 1947- |1 https://id.oclc.org/worldcat/entity/E39PCjDbTCRRbBwv4mJgPtQwRX |0 http://id.loc.gov/authorities/names/n2008021003 | |
245 | 1 | 0 | |a Hilbert transforms. |n Vol. 1 / |c Frederick W. King. |
264 | 1 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2009. | |
300 | |a 1 online resource (xxxviii, 858 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v volume 124 | |
504 | |a Includes bibliographical references (pages 745-823) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Preface; List of symbols; List of abbreviations; 1 Introduction; 1.1 Some common integral transforms; 1.2 Definition of the Hilbert transform; 1.3 The Hilbert transform as an operator; 1.4 Diversity of applications of the Hilbert transform; Notes; Exercises; 2 Review of some background mathematics; 2.1 Introduction; 2.2 Order symbols O() and o(); 2.3 Lipschitz and Hölder conditions; 2.4 Cauchy principal value; 2.5 Fourier series; 2.5.1 Periodic property; 2.5.2 Piecewise continuous functions; 2.5.3 Definition of Fourier series | |
505 | 8 | |a 2.5.4 Bessel's inequality2.6 Fourier transforms; 2.6.1 Definition of the Fourier transform; 2.6.2 Convolution theorem; 2.6.3 The Parseval and Plancherel formulas; 2.7 The Fourier integral; 2.8 Some basic results from complex variable theory; 2.8.1 Integration of analytic functions; 2.8.2 Cauchy integral theorem; 2.8.3 Cauchy integral formula; 2.8.4 Jordan's lemma; 2.8.5 The Laurent expansion; 2.8.6 The Cauchy residue theorem; 2.8.7 Entire functions; 2.9 Conformal mapping; 2.10 Some functional analysis basics; 2.10.1 Hilbert space; 2.10.2 The Hardy space Hp; 2.10.3 Topological space | |
505 | 8 | |a 2.10.4 Compact operators2.11 Lebesgue measure and integration; 2.11.1 The notion of measure; 2.12 Theorems due to Fubini and Tonelli; 2.13 The Hardy -- Poincaré -- Bertrand formula; 2.14 Riemann -- Lebesgue lemma; 2.15 Some elements of the theory of distributions; 2.15.1 Generalized functions as sequences of functions; 2.15.2 Schwartz distributions; 2.16 Summation of series: convergence accelerator techniques; 2.16.1 Richardson extrapolation; 2.16.2 The Levin sequence transformations; Notes; Exercises; 3 Derivation of the Hilbert transform relations; 3.1 Hilbert transforms -- basic forms | |
505 | 8 | |a 3.2 The Poisson integral for the half plane3.3 The Poisson integral for the disc; 3.3.1 The Poisson kernel for the disc; 3.4 Hilbert transform on the real line; 3.4.1 Conditions on the function f; 3.4.2 The Phragmén -- Lindelöf theorem; 3.4.3 Some examples; 3.5 Transformation to other limits; 3.6 Cauchy integrals; 3.7 The Plemelj formulas; 3.8 Inversion formula for a Cauchy integral; 3.9 Hilbert transform on the circle; 3.10 Alternative approach to the Hilbert transform on the circle; 3.11 Hardy's approach; 3.11.1 Hilbert transform on R | |
505 | 8 | |a 3.12 Fourier integral approach to the Hilbert transform on bold0mu mumu RRRawRRRR3.13 Fourier series approach; 3.14 The Hilbert transform for periodic functions; 3.15 Cancellation behavior for the Hilbert transform; Notes; Exercises; 4 Some basic properties of the Hilbert transform; 4.1 Introduction; 4.1.1 Complex conjugation property; 4.1.2 Linearity; 4.2 Hilbert transforms of even or odd functions; 4.3 Skew-symmetric character of Hilbert transform pairs; 4.4 Inversion property; 4.5 Scale changes; 4.5.1 Linear scale changes | |
520 | |a The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications. | ||
650 | 0 | |a Hilbert transform. |0 http://id.loc.gov/authorities/subjects/sh95003535 | |
650 | 6 | |a Transformation de Hilbert. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Hilbert transform |2 fast | |
758 | |i has work: |a Vol. 1 Hilbert transforms (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFyf3DJcYyfWFPbrF89p4C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a King, Frederick W., 1947- |t Hilbert transforms. Vol. 1 |z 9780521887625 |w (DLC) 2008013534 |w (OCoLC)764540516 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v volume 124. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569346 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 569346 | ||
938 | |a YBP Library Services |b YANK |n 11311216 | ||
938 | |a YBP Library Services |b YANK |n 11817899 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861692521 |
---|---|
_version_ | 1816882248949956608 |
adam_text | |
any_adam_object | |
author | King, Frederick W., 1947- |
author_GND | http://id.loc.gov/authorities/names/n2008021003 |
author_facet | King, Frederick W., 1947- |
author_role | |
author_sort | King, Frederick W., 1947- |
author_variant | f w k fw fwk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA432 |
callnumber-raw | QA432 .K56 2009eb |
callnumber-search | QA432 .K56 2009eb |
callnumber-sort | QA 3432 K56 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Preface; List of symbols; List of abbreviations; 1 Introduction; 1.1 Some common integral transforms; 1.2 Definition of the Hilbert transform; 1.3 The Hilbert transform as an operator; 1.4 Diversity of applications of the Hilbert transform; Notes; Exercises; 2 Review of some background mathematics; 2.1 Introduction; 2.2 Order symbols O() and o(); 2.3 Lipschitz and Hölder conditions; 2.4 Cauchy principal value; 2.5 Fourier series; 2.5.1 Periodic property; 2.5.2 Piecewise continuous functions; 2.5.3 Definition of Fourier series 2.5.4 Bessel's inequality2.6 Fourier transforms; 2.6.1 Definition of the Fourier transform; 2.6.2 Convolution theorem; 2.6.3 The Parseval and Plancherel formulas; 2.7 The Fourier integral; 2.8 Some basic results from complex variable theory; 2.8.1 Integration of analytic functions; 2.8.2 Cauchy integral theorem; 2.8.3 Cauchy integral formula; 2.8.4 Jordan's lemma; 2.8.5 The Laurent expansion; 2.8.6 The Cauchy residue theorem; 2.8.7 Entire functions; 2.9 Conformal mapping; 2.10 Some functional analysis basics; 2.10.1 Hilbert space; 2.10.2 The Hardy space Hp; 2.10.3 Topological space 2.10.4 Compact operators2.11 Lebesgue measure and integration; 2.11.1 The notion of measure; 2.12 Theorems due to Fubini and Tonelli; 2.13 The Hardy -- Poincaré -- Bertrand formula; 2.14 Riemann -- Lebesgue lemma; 2.15 Some elements of the theory of distributions; 2.15.1 Generalized functions as sequences of functions; 2.15.2 Schwartz distributions; 2.16 Summation of series: convergence accelerator techniques; 2.16.1 Richardson extrapolation; 2.16.2 The Levin sequence transformations; Notes; Exercises; 3 Derivation of the Hilbert transform relations; 3.1 Hilbert transforms -- basic forms 3.2 The Poisson integral for the half plane3.3 The Poisson integral for the disc; 3.3.1 The Poisson kernel for the disc; 3.4 Hilbert transform on the real line; 3.4.1 Conditions on the function f; 3.4.2 The Phragmén -- Lindelöf theorem; 3.4.3 Some examples; 3.5 Transformation to other limits; 3.6 Cauchy integrals; 3.7 The Plemelj formulas; 3.8 Inversion formula for a Cauchy integral; 3.9 Hilbert transform on the circle; 3.10 Alternative approach to the Hilbert transform on the circle; 3.11 Hardy's approach; 3.11.1 Hilbert transform on R 3.12 Fourier integral approach to the Hilbert transform on bold0mu mumu RRRawRRRR3.13 Fourier series approach; 3.14 The Hilbert transform for periodic functions; 3.15 Cancellation behavior for the Hilbert transform; Notes; Exercises; 4 Some basic properties of the Hilbert transform; 4.1 Introduction; 4.1.1 Complex conjugation property; 4.1.2 Linearity; 4.2 Hilbert transforms of even or odd functions; 4.3 Skew-symmetric character of Hilbert transform pairs; 4.4 Inversion property; 4.5 Scale changes; 4.5.1 Linear scale changes |
ctrlnum | (OCoLC)861692521 |
dewey-full | 515/.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.723 |
dewey-search | 515/.723 |
dewey-sort | 3515 3723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06537cam a2200661 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861692521</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131029s2009 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">862101321</subfield><subfield code="a">862101383</subfield><subfield code="a">964928108</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089792</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089794</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107096080</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107096081</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107095045</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107095042</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521887625</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521887623</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521517206</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521517201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692521</subfield><subfield code="z">(OCoLC)862101321</subfield><subfield code="z">(OCoLC)862101383</subfield><subfield code="z">(OCoLC)964928108</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA432</subfield><subfield code="b">.K56 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.723</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">King, Frederick W.,</subfield><subfield code="d">1947-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDbTCRRbBwv4mJgPtQwRX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2008021003</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert transforms.</subfield><subfield code="n">Vol. 1 /</subfield><subfield code="c">Frederick W. King.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxviii, 858 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 124</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 745-823) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Preface; List of symbols; List of abbreviations; 1 Introduction; 1.1 Some common integral transforms; 1.2 Definition of the Hilbert transform; 1.3 The Hilbert transform as an operator; 1.4 Diversity of applications of the Hilbert transform; Notes; Exercises; 2 Review of some background mathematics; 2.1 Introduction; 2.2 Order symbols O() and o(); 2.3 Lipschitz and Hölder conditions; 2.4 Cauchy principal value; 2.5 Fourier series; 2.5.1 Periodic property; 2.5.2 Piecewise continuous functions; 2.5.3 Definition of Fourier series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5.4 Bessel's inequality2.6 Fourier transforms; 2.6.1 Definition of the Fourier transform; 2.6.2 Convolution theorem; 2.6.3 The Parseval and Plancherel formulas; 2.7 The Fourier integral; 2.8 Some basic results from complex variable theory; 2.8.1 Integration of analytic functions; 2.8.2 Cauchy integral theorem; 2.8.3 Cauchy integral formula; 2.8.4 Jordan's lemma; 2.8.5 The Laurent expansion; 2.8.6 The Cauchy residue theorem; 2.8.7 Entire functions; 2.9 Conformal mapping; 2.10 Some functional analysis basics; 2.10.1 Hilbert space; 2.10.2 The Hardy space Hp; 2.10.3 Topological space</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.10.4 Compact operators2.11 Lebesgue measure and integration; 2.11.1 The notion of measure; 2.12 Theorems due to Fubini and Tonelli; 2.13 The Hardy -- Poincaré -- Bertrand formula; 2.14 Riemann -- Lebesgue lemma; 2.15 Some elements of the theory of distributions; 2.15.1 Generalized functions as sequences of functions; 2.15.2 Schwartz distributions; 2.16 Summation of series: convergence accelerator techniques; 2.16.1 Richardson extrapolation; 2.16.2 The Levin sequence transformations; Notes; Exercises; 3 Derivation of the Hilbert transform relations; 3.1 Hilbert transforms -- basic forms</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 The Poisson integral for the half plane3.3 The Poisson integral for the disc; 3.3.1 The Poisson kernel for the disc; 3.4 Hilbert transform on the real line; 3.4.1 Conditions on the function f; 3.4.2 The Phragmén -- Lindelöf theorem; 3.4.3 Some examples; 3.5 Transformation to other limits; 3.6 Cauchy integrals; 3.7 The Plemelj formulas; 3.8 Inversion formula for a Cauchy integral; 3.9 Hilbert transform on the circle; 3.10 Alternative approach to the Hilbert transform on the circle; 3.11 Hardy's approach; 3.11.1 Hilbert transform on R</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.12 Fourier integral approach to the Hilbert transform on bold0mu mumu RRRawRRRR3.13 Fourier series approach; 3.14 The Hilbert transform for periodic functions; 3.15 Cancellation behavior for the Hilbert transform; Notes; Exercises; 4 Some basic properties of the Hilbert transform; 4.1 Introduction; 4.1.1 Complex conjugation property; 4.1.2 Linearity; 4.2 Hilbert transforms of even or odd functions; 4.3 Skew-symmetric character of Hilbert transform pairs; 4.4 Inversion property; 4.5 Scale changes; 4.5.1 Linear scale changes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert transform.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95003535</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformation de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert transform</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Vol. 1 Hilbert transforms (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFyf3DJcYyfWFPbrF89p4C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">King, Frederick W., 1947-</subfield><subfield code="t">Hilbert transforms. Vol. 1</subfield><subfield code="z">9780521887625</subfield><subfield code="w">(DLC) 2008013534</subfield><subfield code="w">(OCoLC)764540516</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 124.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569346</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569346</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11311216</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11817899</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861692521 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:36Z |
institution | BVB |
isbn | 9781107089792 1107089794 9781107096080 1107096081 9781107095045 1107095042 |
language | English |
oclc_num | 861692521 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxviii, 858 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | King, Frederick W., 1947- https://id.oclc.org/worldcat/entity/E39PCjDbTCRRbBwv4mJgPtQwRX http://id.loc.gov/authorities/names/n2008021003 Hilbert transforms. Vol. 1 / Frederick W. King. Cambridge, UK ; New York : Cambridge University Press, 2009. 1 online resource (xxxviii, 858 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; volume 124 Includes bibliographical references (pages 745-823) and indexes. Print version record. Cover; Title; Copyright; Dedication; Contents; Preface; List of symbols; List of abbreviations; 1 Introduction; 1.1 Some common integral transforms; 1.2 Definition of the Hilbert transform; 1.3 The Hilbert transform as an operator; 1.4 Diversity of applications of the Hilbert transform; Notes; Exercises; 2 Review of some background mathematics; 2.1 Introduction; 2.2 Order symbols O() and o(); 2.3 Lipschitz and Hölder conditions; 2.4 Cauchy principal value; 2.5 Fourier series; 2.5.1 Periodic property; 2.5.2 Piecewise continuous functions; 2.5.3 Definition of Fourier series 2.5.4 Bessel's inequality2.6 Fourier transforms; 2.6.1 Definition of the Fourier transform; 2.6.2 Convolution theorem; 2.6.3 The Parseval and Plancherel formulas; 2.7 The Fourier integral; 2.8 Some basic results from complex variable theory; 2.8.1 Integration of analytic functions; 2.8.2 Cauchy integral theorem; 2.8.3 Cauchy integral formula; 2.8.4 Jordan's lemma; 2.8.5 The Laurent expansion; 2.8.6 The Cauchy residue theorem; 2.8.7 Entire functions; 2.9 Conformal mapping; 2.10 Some functional analysis basics; 2.10.1 Hilbert space; 2.10.2 The Hardy space Hp; 2.10.3 Topological space 2.10.4 Compact operators2.11 Lebesgue measure and integration; 2.11.1 The notion of measure; 2.12 Theorems due to Fubini and Tonelli; 2.13 The Hardy -- Poincaré -- Bertrand formula; 2.14 Riemann -- Lebesgue lemma; 2.15 Some elements of the theory of distributions; 2.15.1 Generalized functions as sequences of functions; 2.15.2 Schwartz distributions; 2.16 Summation of series: convergence accelerator techniques; 2.16.1 Richardson extrapolation; 2.16.2 The Levin sequence transformations; Notes; Exercises; 3 Derivation of the Hilbert transform relations; 3.1 Hilbert transforms -- basic forms 3.2 The Poisson integral for the half plane3.3 The Poisson integral for the disc; 3.3.1 The Poisson kernel for the disc; 3.4 Hilbert transform on the real line; 3.4.1 Conditions on the function f; 3.4.2 The Phragmén -- Lindelöf theorem; 3.4.3 Some examples; 3.5 Transformation to other limits; 3.6 Cauchy integrals; 3.7 The Plemelj formulas; 3.8 Inversion formula for a Cauchy integral; 3.9 Hilbert transform on the circle; 3.10 Alternative approach to the Hilbert transform on the circle; 3.11 Hardy's approach; 3.11.1 Hilbert transform on R 3.12 Fourier integral approach to the Hilbert transform on bold0mu mumu RRRawRRRR3.13 Fourier series approach; 3.14 The Hilbert transform for periodic functions; 3.15 Cancellation behavior for the Hilbert transform; Notes; Exercises; 4 Some basic properties of the Hilbert transform; 4.1 Introduction; 4.1.1 Complex conjugation property; 4.1.2 Linearity; 4.2 Hilbert transforms of even or odd functions; 4.3 Skew-symmetric character of Hilbert transform pairs; 4.4 Inversion property; 4.5 Scale changes; 4.5.1 Linear scale changes The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications. Hilbert transform. http://id.loc.gov/authorities/subjects/sh95003535 Transformation de Hilbert. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Hilbert transform fast has work: Vol. 1 Hilbert transforms (Text) https://id.oclc.org/worldcat/entity/E39PCFyf3DJcYyfWFPbrF89p4C https://id.oclc.org/worldcat/ontology/hasWork Print version: King, Frederick W., 1947- Hilbert transforms. Vol. 1 9780521887625 (DLC) 2008013534 (OCoLC)764540516 Encyclopedia of mathematics and its applications ; volume 124. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569346 Volltext |
spellingShingle | King, Frederick W., 1947- Hilbert transforms. Encyclopedia of mathematics and its applications ; Cover; Title; Copyright; Dedication; Contents; Preface; List of symbols; List of abbreviations; 1 Introduction; 1.1 Some common integral transforms; 1.2 Definition of the Hilbert transform; 1.3 The Hilbert transform as an operator; 1.4 Diversity of applications of the Hilbert transform; Notes; Exercises; 2 Review of some background mathematics; 2.1 Introduction; 2.2 Order symbols O() and o(); 2.3 Lipschitz and Hölder conditions; 2.4 Cauchy principal value; 2.5 Fourier series; 2.5.1 Periodic property; 2.5.2 Piecewise continuous functions; 2.5.3 Definition of Fourier series 2.5.4 Bessel's inequality2.6 Fourier transforms; 2.6.1 Definition of the Fourier transform; 2.6.2 Convolution theorem; 2.6.3 The Parseval and Plancherel formulas; 2.7 The Fourier integral; 2.8 Some basic results from complex variable theory; 2.8.1 Integration of analytic functions; 2.8.2 Cauchy integral theorem; 2.8.3 Cauchy integral formula; 2.8.4 Jordan's lemma; 2.8.5 The Laurent expansion; 2.8.6 The Cauchy residue theorem; 2.8.7 Entire functions; 2.9 Conformal mapping; 2.10 Some functional analysis basics; 2.10.1 Hilbert space; 2.10.2 The Hardy space Hp; 2.10.3 Topological space 2.10.4 Compact operators2.11 Lebesgue measure and integration; 2.11.1 The notion of measure; 2.12 Theorems due to Fubini and Tonelli; 2.13 The Hardy -- Poincaré -- Bertrand formula; 2.14 Riemann -- Lebesgue lemma; 2.15 Some elements of the theory of distributions; 2.15.1 Generalized functions as sequences of functions; 2.15.2 Schwartz distributions; 2.16 Summation of series: convergence accelerator techniques; 2.16.1 Richardson extrapolation; 2.16.2 The Levin sequence transformations; Notes; Exercises; 3 Derivation of the Hilbert transform relations; 3.1 Hilbert transforms -- basic forms 3.2 The Poisson integral for the half plane3.3 The Poisson integral for the disc; 3.3.1 The Poisson kernel for the disc; 3.4 Hilbert transform on the real line; 3.4.1 Conditions on the function f; 3.4.2 The Phragmén -- Lindelöf theorem; 3.4.3 Some examples; 3.5 Transformation to other limits; 3.6 Cauchy integrals; 3.7 The Plemelj formulas; 3.8 Inversion formula for a Cauchy integral; 3.9 Hilbert transform on the circle; 3.10 Alternative approach to the Hilbert transform on the circle; 3.11 Hardy's approach; 3.11.1 Hilbert transform on R 3.12 Fourier integral approach to the Hilbert transform on bold0mu mumu RRRawRRRR3.13 Fourier series approach; 3.14 The Hilbert transform for periodic functions; 3.15 Cancellation behavior for the Hilbert transform; Notes; Exercises; 4 Some basic properties of the Hilbert transform; 4.1 Introduction; 4.1.1 Complex conjugation property; 4.1.2 Linearity; 4.2 Hilbert transforms of even or odd functions; 4.3 Skew-symmetric character of Hilbert transform pairs; 4.4 Inversion property; 4.5 Scale changes; 4.5.1 Linear scale changes Hilbert transform. http://id.loc.gov/authorities/subjects/sh95003535 Transformation de Hilbert. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Hilbert transform fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh95003535 |
title | Hilbert transforms. |
title_auth | Hilbert transforms. |
title_exact_search | Hilbert transforms. |
title_full | Hilbert transforms. Vol. 1 / Frederick W. King. |
title_fullStr | Hilbert transforms. Vol. 1 / Frederick W. King. |
title_full_unstemmed | Hilbert transforms. Vol. 1 / Frederick W. King. |
title_short | Hilbert transforms. |
title_sort | hilbert transforms |
topic | Hilbert transform. http://id.loc.gov/authorities/subjects/sh95003535 Transformation de Hilbert. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Hilbert transform fast |
topic_facet | Hilbert transform. Transformation de Hilbert. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Hilbert transform |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569346 |
work_keys_str_mv | AT kingfrederickw hilberttransformsvol1 |