General orthogonal polynomials /:
In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications. The assumptions on the measure of orthogonality are general, the only restriction is that it has compact support on the complex plane. In the development of the th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1992.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 43. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications. The assumptions on the measure of orthogonality are general, the only restriction is that it has compact support on the complex plane. In the development of the theory the main emphasis is on asymptotic behaviour and the distribution of zeros. In the following chapters, the author explores the exact upper and lower bounds are given for the orthonormal polynomials and for the location of their zeros; regular n-th root asymptotic behaviour; and applications of the theory, including exact rates for convergence of rational interpolants, best rational approximants and non-diagonal Pade approximants to Markov functions (Cauchy transforms of measures). The results are based on potential theoretic methods, so both the methods and the results can be extended to extremal polynomials in norms other than L2 norms. A sketch of the theory of logarithmic potentials is given in an appendix. |
Beschreibung: | 1 online resource (xii, 250 pages) |
Bibliographie: | Includes bibliographical references (pages 243-248) and index. |
ISBN: | 9781107088306 1107088305 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861692077 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131029s1992 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d OCLCQ |d AGLDB |d COO |d OCLCQ |d UAB |d OCLCQ |d VTS |d STF |d M8D |d OCLCQ |d INARC |d AJS |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 797842552 | ||
020 | |a 9781107088306 |q (electronic bk.) | ||
020 | |a 1107088305 |q (electronic bk.) | ||
020 | |z 0521415349 | ||
020 | |z 9780521415347 | ||
020 | |z 9780511759420 | ||
035 | |a (OCoLC)861692077 |z (OCoLC)797842552 | ||
050 | 4 | |a QA404.5 |b .S73 1992eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.55 |2 22 | |
084 | |a 31.35 |2 bcl | ||
084 | |a *33C50 |2 msc | ||
084 | |a 42C05 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Stahl, Herbert. | |
245 | 1 | 0 | |a General orthogonal polynomials / |c Herbert Stahl, Vilmos Totik. |
264 | 1 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1992. | |
300 | |a 1 online resource (xii, 250 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v volume 43 | |
504 | |a Includes bibliographical references (pages 243-248) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications. The assumptions on the measure of orthogonality are general, the only restriction is that it has compact support on the complex plane. In the development of the theory the main emphasis is on asymptotic behaviour and the distribution of zeros. In the following chapters, the author explores the exact upper and lower bounds are given for the orthonormal polynomials and for the location of their zeros; regular n-th root asymptotic behaviour; and applications of the theory, including exact rates for convergence of rational interpolants, best rational approximants and non-diagonal Pade approximants to Markov functions (Cauchy transforms of measures). The results are based on potential theoretic methods, so both the methods and the results can be extended to extremal polynomials in norms other than L2 norms. A sketch of the theory of logarithmic potentials is given in an appendix. | ||
505 | 8 | |a A. VII BalayageA. VIII Green Potential and Condenser Capacity; A. IX The Energy Problem in the Presence of an External Field; Notes and Bibliographical References; Bibliography; Index | |
650 | 0 | |a Orthogonal polynomials. |0 http://id.loc.gov/authorities/subjects/sh85095794 | |
650 | 6 | |a Polynômes orthogonaux. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Orthogonal polynomials |2 fast | |
650 | 7 | |a Polynômes orthogonaux. |2 ram | |
700 | 1 | |a Totik, V. | |
758 | |i has work: |a General orthogonal polynomials (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGGjyMMdjx7YrtCYGhfwYd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Stahl, Herbert. |t General orthogonal polynomials |z 0521415349 |w (DLC) 91027733 |w (OCoLC)24219180 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 43. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10562337 | ||
938 | |a EBSCOhost |b EBSC |n 569331 | ||
938 | |a Internet Archive |b INAR |n generalorthogona0043stah | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861692077 |
---|---|
_version_ | 1813903625290776576 |
adam_text | |
any_adam_object | |
author | Stahl, Herbert |
author2 | Totik, V. |
author2_role | |
author2_variant | v t vt |
author_facet | Stahl, Herbert Totik, V. |
author_role | |
author_sort | Stahl, Herbert |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404.5 .S73 1992eb |
callnumber-search | QA404.5 .S73 1992eb |
callnumber-sort | QA 3404.5 S73 41992EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | A. VII BalayageA. VIII Green Potential and Condenser Capacity; A. IX The Energy Problem in the Presence of an External Field; Notes and Bibliographical References; Bibliography; Index |
ctrlnum | (OCoLC)861692077 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03733cam a2200613 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861692077</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131029s1992 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797842552</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088306</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088305</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521415349</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521415347</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511759420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692077</subfield><subfield code="z">(OCoLC)797842552</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA404.5</subfield><subfield code="b">.S73 1992eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.35</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*33C50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42C05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stahl, Herbert.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General orthogonal polynomials /</subfield><subfield code="c">Herbert Stahl, Vilmos Totik.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1992.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 250 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 43</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 243-248) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications. The assumptions on the measure of orthogonality are general, the only restriction is that it has compact support on the complex plane. In the development of the theory the main emphasis is on asymptotic behaviour and the distribution of zeros. In the following chapters, the author explores the exact upper and lower bounds are given for the orthonormal polynomials and for the location of their zeros; regular n-th root asymptotic behaviour; and applications of the theory, including exact rates for convergence of rational interpolants, best rational approximants and non-diagonal Pade approximants to Markov functions (Cauchy transforms of measures). The results are based on potential theoretic methods, so both the methods and the results can be extended to extremal polynomials in norms other than L2 norms. A sketch of the theory of logarithmic potentials is given in an appendix.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A. VII BalayageA. VIII Green Potential and Condenser Capacity; A. IX The Energy Problem in the Presence of an External Field; Notes and Bibliographical References; Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Orthogonal polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85095794</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes orthogonaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonal polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynômes orthogonaux.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Totik, V.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">General orthogonal polynomials (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGGjyMMdjx7YrtCYGhfwYd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Stahl, Herbert.</subfield><subfield code="t">General orthogonal polynomials</subfield><subfield code="z">0521415349</subfield><subfield code="w">(DLC) 91027733</subfield><subfield code="w">(OCoLC)24219180</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 43.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562337</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569331</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">generalorthogona0043stah</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861692077 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:39Z |
institution | BVB |
isbn | 9781107088306 1107088305 |
language | English |
oclc_num | 861692077 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xii, 250 pages) |
psigel | ZDB-4-EBA |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Stahl, Herbert. General orthogonal polynomials / Herbert Stahl, Vilmos Totik. Cambridge [England] ; New York : Cambridge University Press, 1992. 1 online resource (xii, 250 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; volume 43 Includes bibliographical references (pages 243-248) and index. Print version record. In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications. The assumptions on the measure of orthogonality are general, the only restriction is that it has compact support on the complex plane. In the development of the theory the main emphasis is on asymptotic behaviour and the distribution of zeros. In the following chapters, the author explores the exact upper and lower bounds are given for the orthonormal polynomials and for the location of their zeros; regular n-th root asymptotic behaviour; and applications of the theory, including exact rates for convergence of rational interpolants, best rational approximants and non-diagonal Pade approximants to Markov functions (Cauchy transforms of measures). The results are based on potential theoretic methods, so both the methods and the results can be extended to extremal polynomials in norms other than L2 norms. A sketch of the theory of logarithmic potentials is given in an appendix. A. VII BalayageA. VIII Green Potential and Condenser Capacity; A. IX The Energy Problem in the Presence of an External Field; Notes and Bibliographical References; Bibliography; Index Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Polynômes orthogonaux. ram Totik, V. has work: General orthogonal polynomials (Text) https://id.oclc.org/worldcat/entity/E39PCGGjyMMdjx7YrtCYGhfwYd https://id.oclc.org/worldcat/ontology/hasWork Print version: Stahl, Herbert. General orthogonal polynomials 0521415349 (DLC) 91027733 (OCoLC)24219180 Encyclopedia of mathematics and its applications ; v. 43. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331 Volltext |
spellingShingle | Stahl, Herbert General orthogonal polynomials / Encyclopedia of mathematics and its applications ; A. VII BalayageA. VIII Green Potential and Condenser Capacity; A. IX The Energy Problem in the Presence of an External Field; Notes and Bibliographical References; Bibliography; Index Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Polynômes orthogonaux. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85095794 |
title | General orthogonal polynomials / |
title_auth | General orthogonal polynomials / |
title_exact_search | General orthogonal polynomials / |
title_full | General orthogonal polynomials / Herbert Stahl, Vilmos Totik. |
title_fullStr | General orthogonal polynomials / Herbert Stahl, Vilmos Totik. |
title_full_unstemmed | General orthogonal polynomials / Herbert Stahl, Vilmos Totik. |
title_short | General orthogonal polynomials / |
title_sort | general orthogonal polynomials |
topic | Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Polynômes orthogonaux. ram |
topic_facet | Orthogonal polynomials. Polynômes orthogonaux. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Orthogonal polynomials |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569331 |
work_keys_str_mv | AT stahlherbert generalorthogonalpolynomials AT totikv generalorthogonalpolynomials |