Path integrals, hyperbolic spaces and selberg trace formulae /:
In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Springer,
2013.
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super- ) trace formula. |
Beschreibung: | 1 online resource (389 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814460088 9814460087 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861528241 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130916s2013 nyu ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d N$T |d ZCU |d OCLCF |d EBLCP |d N15 |d DEBSZ |d OCLCQ |d COCUF |d AGLDB |d MOR |d PIFAG |d MERUC |d OCLCQ |d JBG |d OCLCQ |d U3W |d STF |d VTS |d NRAMU |d ICG |d INT |d AU@ |d OCLCQ |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 858763089 |a 961602025 |a 962575430 |a 1058832897 | ||
020 | |a 9789814460088 |q (electronic bk.) | ||
020 | |a 9814460087 |q (electronic bk.) | ||
020 | |z 9789814460071 | ||
035 | |a (OCoLC)861528241 |z (OCoLC)858763089 |z (OCoLC)961602025 |z (OCoLC)962575430 |z (OCoLC)1058832897 | ||
050 | 4 | |a QC174.17.P27 |b G76 2013eb | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.12 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Grosche, C. |q (Christian), |d 1956- |1 https://id.oclc.org/worldcat/entity/E39PCjvP3yM849pYmrKVypy7d3 |0 http://id.loc.gov/authorities/names/n95102378 | |
245 | 1 | 0 | |a Path integrals, hyperbolic spaces and selberg trace formulae / |c Christian Grosche. |
250 | |a Second edition. | ||
264 | 1 | |a New York : |b Springer, |c 2013. | |
300 | |a 1 online resource (389 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (ebrary, viewed September 16, 2013). | |
546 | |a English. | ||
505 | 0 | |a 1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook. | |
520 | |a In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super- ) trace formula. | ||
650 | 0 | |a Path integrals. |0 http://id.loc.gov/authorities/subjects/sh85067112 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 6 | |a Intégrales de chemin. | |
650 | 6 | |a Théorie quantique. | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a Path integrals |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
758 | |i has work: |a Path integrals, hyperbolic spaces, and Selberg trace formulae (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFXKmvHcRMrY6v6WRFVxTb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Grosche, C. |t Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae. |d Singapore : World Scientific Publishing Company, ©2013 |z 9789814460071 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=637088 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=637088 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1389085 | ||
938 | |a ebrary |b EBRY |n ebr10756245 | ||
938 | |a EBSCOhost |b EBSC |n 637088 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861528241 |
---|---|
_version_ | 1826942024492777472 |
adam_text | |
any_adam_object | |
author | Grosche, C. (Christian), 1956- |
author_GND | http://id.loc.gov/authorities/names/n95102378 |
author_facet | Grosche, C. (Christian), 1956- |
author_role | |
author_sort | Grosche, C. 1956- |
author_variant | c g cg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.P27 G76 2013eb |
callnumber-search | QC174.17.P27 G76 2013eb |
callnumber-sort | QC 3174.17 P27 G76 42013EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook. |
ctrlnum | (OCoLC)861528241 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06812cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861528241</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130916s2013 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N15</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">858763089</subfield><subfield code="a">961602025</subfield><subfield code="a">962575430</subfield><subfield code="a">1058832897</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814460088</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814460087</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814460071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861528241</subfield><subfield code="z">(OCoLC)858763089</subfield><subfield code="z">(OCoLC)961602025</subfield><subfield code="z">(OCoLC)962575430</subfield><subfield code="z">(OCoLC)1058832897</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.17.P27</subfield><subfield code="b">G76 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosche, C.</subfield><subfield code="q">(Christian),</subfield><subfield code="d">1956-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvP3yM849pYmrKVypy7d3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95102378</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Path integrals, hyperbolic spaces and selberg trace formulae /</subfield><subfield code="c">Christian Grosche.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Springer,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (389 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed September 16, 2013).</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super- ) trace formula.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Path integrals.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067112</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrales de chemin.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Path integrals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Path integrals, hyperbolic spaces, and Selberg trace formulae (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFXKmvHcRMrY6v6WRFVxTb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Grosche, C.</subfield><subfield code="t">Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae.</subfield><subfield code="d">Singapore : World Scientific Publishing Company, ©2013</subfield><subfield code="z">9789814460071</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=637088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=637088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1389085</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10756245</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">637088</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861528241 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:21:26Z |
institution | BVB |
isbn | 9789814460088 9814460087 |
language | English |
oclc_num | 861528241 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (389 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer, |
record_format | marc |
spelling | Grosche, C. (Christian), 1956- https://id.oclc.org/worldcat/entity/E39PCjvP3yM849pYmrKVypy7d3 http://id.loc.gov/authorities/names/n95102378 Path integrals, hyperbolic spaces and selberg trace formulae / Christian Grosche. Second edition. New York : Springer, 2013. 1 online resource (389 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from PDF title page (ebrary, viewed September 16, 2013). English. 1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook. In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super- ) trace formula. Path integrals. http://id.loc.gov/authorities/subjects/sh85067112 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Intégrales de chemin. Théorie quantique. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Path integrals fast Quantum theory fast has work: Path integrals, hyperbolic spaces, and Selberg trace formulae (Text) https://id.oclc.org/worldcat/entity/E39PCFXKmvHcRMrY6v6WRFVxTb https://id.oclc.org/worldcat/ontology/hasWork Print version: Grosche, C. Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae. Singapore : World Scientific Publishing Company, ©2013 9789814460071 |
spellingShingle | Grosche, C. (Christian), 1956- Path integrals, hyperbolic spaces and selberg trace formulae / 1. Introduction -- 2. Path integrals in quantum mechanics. 2.1. The Feynman path integral. 2.2. Defining the path integral. 2.3. Transformation techniques. 2.4. Group path integration. 2.5. Klein-Gordon particle. 2.6. Basic path integrals -- 3. Separable coordinate systems on spaces of constant curvature. 3.1. Separation of variables and breaking of symmetry. 3.2. Classification of coordinate systems. 3.3. Coordinate systems in spaces of constant curvature -- 4. Path integrals in pseudo-Euclidean geometry. 4.1. The pseudo-Euclidean plane. 4.2. Three-dimensional pseudo-Euclidean space -- 5. Path integrals in Euclidean spaces. 5.1. Two-dimensional Euclidean space. 5.2. Three-dimensional Euclidean space -- 6. Path integrals on spheres. 6.1. The two-dimensional sphere. 6.2. The three-dimensional sphere -- 7. Path integrals on hyperboloids. 7.1. The two-dimensional pseudosphere. 7.2. The three-dimensional pseudosphere -- 8. Path integral on the complex sphere. 8.1. The two-dimensional complex sphere. 8.2. The three-dimensional complex sphere. 8.3. Path integral evaluations on the complex sphere -- 9. Path integrals on Hermitian hyperbolic space. 9.1. Hermitian hyperbolic space HH(2). 9.2. Path integral evaluations on HH(2) -- 10. Path integrals on Darboux spaces. 10.1. Two-dimensional Darboux spaces. 10.2. Path integral evaluations. 10.3. Three-dimensional Darboux spaces -- 11. Path integrals on single-sheeted hyperboloids. 11.1. The two-dimensional single-sheeted hyperboloid -- 12. Miscellaneous results on path integration. 12.1. The D-dimensional pseudosphere. 12.2. Hyperbolic rank-one spaces. 12.3. Path integral on SU(n) and SU(n-1,1) -- 13. Billiard systems and periodic orbit theory. 13.1. Some elements of periodic orbit theory. 13.2. A billiard system in a hyperbolic rectangle. 13.3. Other integrable billiards in two and three dimensions. 13.4. Numerical investigation of integrable billiard systems -- 14. The Selberg trace formula. 14.1. The Selberg trace formula in mathematical physics. 14.2. Applications and generalizations. 14.3. The Selberg trace formula on Riemann surfaces. 14.4. The Selberg trace formula on bordered Riemann surfaces -- 15. The Selberg super-trace formula. 15.1. Automorphisms on super-Riemann surfaces. 15.2. Selberg super-zeta-functions. 15.3. Super-determinants of Dirac operators. 15.4. The Selberg super-trace formula on bordered super-Riemann surfaces. 15.5. Selberg super-zeta-functions. 15.6. Super-determinants of Dirac operators. 15.7. Asymptotic distributions on super-Riemann surfaces -- 16. Summary and discussion. 16.1. Results on path integrals. 16.2. Results on trace formulæ. 16.3. Miscellaneous results, final remarks, and outlook. Path integrals. http://id.loc.gov/authorities/subjects/sh85067112 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Intégrales de chemin. Théorie quantique. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Path integrals fast Quantum theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067112 http://id.loc.gov/authorities/subjects/sh85109469 |
title | Path integrals, hyperbolic spaces and selberg trace formulae / |
title_auth | Path integrals, hyperbolic spaces and selberg trace formulae / |
title_exact_search | Path integrals, hyperbolic spaces and selberg trace formulae / |
title_full | Path integrals, hyperbolic spaces and selberg trace formulae / Christian Grosche. |
title_fullStr | Path integrals, hyperbolic spaces and selberg trace formulae / Christian Grosche. |
title_full_unstemmed | Path integrals, hyperbolic spaces and selberg trace formulae / Christian Grosche. |
title_short | Path integrals, hyperbolic spaces and selberg trace formulae / |
title_sort | path integrals hyperbolic spaces and selberg trace formulae |
topic | Path integrals. http://id.loc.gov/authorities/subjects/sh85067112 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Intégrales de chemin. Théorie quantique. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Path integrals fast Quantum theory fast |
topic_facet | Path integrals. Quantum theory. Intégrales de chemin. Théorie quantique. SCIENCE Energy. SCIENCE Mechanics General. SCIENCE Physics General. Path integrals Quantum theory |
work_keys_str_mv | AT groschec pathintegralshyperbolicspacesandselbergtraceformulae |