Riemann surfaces /:
This is an authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view the book pulls together materials from global analysis topology, and algebraic geometry, and covers the essential...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2011.
|
Schriftenreihe: | Oxford graduate texts in mathematics ;
22. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is an authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view the book pulls together materials from global analysis topology, and algebraic geometry, and covers the essential mathematical methods and tools. |
Beschreibung: | 1 online resource (xiii, 286 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 282-283) and index. |
ISBN: | 9780191545849 0191545848 1299990290 9781299990296 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861200296 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131021s2011 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d YDXCP |d OTZ |d OCLCF |d OCLCQ |d E7B |d EBLCP |d DEBSZ |d STBDS |d AGLDB |d LOA |d MERUC |d K6U |d ICG |d PIFAG |d FVL |d ZCU |d OCLCQ |d NJR |d OCLCO |d U3W |d OCLCQ |d STF |d WRM |d OCLCQ |d VTS |d OCLCQ |d DEBBG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d OCLCQ |d NLE |d LUN |d OCLCQ |d OCLCO |d TXE |d OCLCQ |d SFB |d OCLCQ |d INARC |d OCLCQ |d OCLCO |d UEJ |d OCLCQ | ||
019 | |a 860923315 |a 868970300 |a 1055400409 |a 1066449380 |a 1081228807 |a 1111240403 |a 1156383457 |a 1162261520 |a 1170529732 |a 1172129806 |a 1228601343 |a 1241820628 |a 1262690096 |a 1272924496 |a 1290116274 |a 1300675274 |a 1392122500 | ||
020 | |a 9780191545849 |q (electronic bk.) | ||
020 | |a 0191545848 |q (electronic bk.) | ||
020 | |a 1299990290 |q (ebk) | ||
020 | |a 9781299990296 |q (ebk) | ||
020 | |z 9780198526391 | ||
020 | |z 0198526393 | ||
020 | |z 9780199606740 | ||
020 | |z 0199606749 | ||
035 | |a (OCoLC)861200296 |z (OCoLC)860923315 |z (OCoLC)868970300 |z (OCoLC)1055400409 |z (OCoLC)1066449380 |z (OCoLC)1081228807 |z (OCoLC)1111240403 |z (OCoLC)1156383457 |z (OCoLC)1162261520 |z (OCoLC)1170529732 |z (OCoLC)1172129806 |z (OCoLC)1228601343 |z (OCoLC)1241820628 |z (OCoLC)1262690096 |z (OCoLC)1272924496 |z (OCoLC)1290116274 |z (OCoLC)1300675274 |z (OCoLC)1392122500 | ||
037 | |a 530280 |b MIL | ||
050 | 4 | |a QA333 |b .D66 2011eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.9/3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Donaldson, S. K. | |
245 | 1 | 0 | |a Riemann surfaces / |c Simon Donaldson. |
264 | 1 | |a Oxford ; |a New York : |b Oxford University Press, |c 2011. | |
300 | |a 1 online resource (xiii, 286 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford graduate texts in mathematics ; |v 22 | |
504 | |a Includes bibliographical references (pages 282-283) and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a This is an authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view the book pulls together materials from global analysis topology, and algebraic geometry, and covers the essential mathematical methods and tools. | |
505 | 0 | |a Cover; Contents; PART I: PRELIMINARIES; 1 Holomorphic functions; 1.1 Simple examples: algebraic functions; 1.2 Analytic continuation: differential equations; Exercises; 2 Surface topology; 2.1 Classification of surfaces; 2.2 Discussion: the mapping class group; Exercises; PART II: BASIC THEORY; 3 Basic definitions; 3.1 Riemann surfaces and holomorphic maps; 3.2 Examples; Exercises; 4 Maps between Riemann surfaces; 4.1 General properties; 4.2 Monodromy and the Riemann Existence Theorem; Exercises; 5 Calculus on surfaces; 5.1 Smooth surfaces; 5.2 de Rham cohomology. | |
505 | 8 | |a 5.3 Calculus on Riemann surfacesExercises; 6 Elliptic functions and integrals; 6.1 Elliptic integrals; 6.2 The Weierstrass [Omitted] function; 6.3 Further topics; Exercises; 7 Applications of the Euler characteristic; 7.1 The Euler characteristic and meromorphic forms; 7.2 Applications; Exercises; PART III: DEEPER THEORY; 8 Meromorphic functions and the Main Theorem for compact Riemann surfaces; 8.1 Consequences of the Main Theorem; 8.2 The Riemann-Roch formula; Exercises; 9 Proof of the Main Theorem; 9.1 Discussion and motivation; 9.2 The Riesz Representation Theorem. | |
505 | 8 | |a 9.3 The heart of the proof9.4 Weyl's Lemma; Exercises; 10 The Uniformisation Theorem; 10.1 Statement; 10.2 Proof of the analogue of the Main Theorem; Exercises; PART IV: FURTHER DEVELOPMENTS; 11 Contrasts in Riemann surface theory; 11.1 Algebraic aspects; 11.2 Hyperbolic surfaces; Exercises; 12 Divisors, line bundles and Jacobians; 12.1 Cohomology and line bundles; 12.2 Jacobians of Riemann surfaces; Exercises; 13 Moduli and deformations; 13.1 Almost-complex structures, Beltrami differentials and the integrability theorem; 13.2 Deformations and cohomology; 13.3 Appendix; Exercises. | |
505 | 8 | |a 14 Mappings and moduli14.1 Diffeomorphisms of the plane; 14.2 Braids, Dehn twists and quadratic singularities; 14.3 Hyperbolic geometry; 14.4 Compactification of the moduli space; Exercises; 15 Ordinary differential equations; 15.1 Conformal mapping; 15.2 Periods of holomorphic forms and ordinary differential equations; Exercises; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W. | |
650 | 0 | |a Riemann surfaces. |0 http://id.loc.gov/authorities/subjects/sh85114044 | |
650 | 6 | |a Surfaces de Riemann. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Riemann surfaces |2 fast | |
650 | 7 | |a Riemannsche Fläche |2 gnd |0 http://d-nb.info/gnd/4049991-1 | |
776 | 0 | 8 | |i Print version: |a Donaldson, S.K. |t Riemann surfaces |z 9780198526391 |w (DLC) 2011283705 |w (OCoLC)694832814 |
830 | 0 | |a Oxford graduate texts in mathematics ; |v 22. |0 http://id.loc.gov/authorities/names/n96121759 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=650774 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25718191 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3055739 | ||
938 | |a ebrary |b EBRY |n ebr10782467 | ||
938 | |a EBSCOhost |b EBSC |n 650774 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26426466 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000168224 | ||
938 | |a YBP Library Services |b YANK |n 11260533 | ||
938 | |a YBP Library Services |b YANK |n 11231350 | ||
938 | |a Internet Archive |b INAR |n riemannsurfaces0000dona | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861200296 |
---|---|
_version_ | 1816882247919206401 |
adam_text | |
any_adam_object | |
author | Donaldson, S. K. |
author_facet | Donaldson, S. K. |
author_role | |
author_sort | Donaldson, S. K. |
author_variant | s k d sk skd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA333 |
callnumber-raw | QA333 .D66 2011eb |
callnumber-search | QA333 .D66 2011eb |
callnumber-sort | QA 3333 D66 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Contents; PART I: PRELIMINARIES; 1 Holomorphic functions; 1.1 Simple examples: algebraic functions; 1.2 Analytic continuation: differential equations; Exercises; 2 Surface topology; 2.1 Classification of surfaces; 2.2 Discussion: the mapping class group; Exercises; PART II: BASIC THEORY; 3 Basic definitions; 3.1 Riemann surfaces and holomorphic maps; 3.2 Examples; Exercises; 4 Maps between Riemann surfaces; 4.1 General properties; 4.2 Monodromy and the Riemann Existence Theorem; Exercises; 5 Calculus on surfaces; 5.1 Smooth surfaces; 5.2 de Rham cohomology. 5.3 Calculus on Riemann surfacesExercises; 6 Elliptic functions and integrals; 6.1 Elliptic integrals; 6.2 The Weierstrass [Omitted] function; 6.3 Further topics; Exercises; 7 Applications of the Euler characteristic; 7.1 The Euler characteristic and meromorphic forms; 7.2 Applications; Exercises; PART III: DEEPER THEORY; 8 Meromorphic functions and the Main Theorem for compact Riemann surfaces; 8.1 Consequences of the Main Theorem; 8.2 The Riemann-Roch formula; Exercises; 9 Proof of the Main Theorem; 9.1 Discussion and motivation; 9.2 The Riesz Representation Theorem. 9.3 The heart of the proof9.4 Weyl's Lemma; Exercises; 10 The Uniformisation Theorem; 10.1 Statement; 10.2 Proof of the analogue of the Main Theorem; Exercises; PART IV: FURTHER DEVELOPMENTS; 11 Contrasts in Riemann surface theory; 11.1 Algebraic aspects; 11.2 Hyperbolic surfaces; Exercises; 12 Divisors, line bundles and Jacobians; 12.1 Cohomology and line bundles; 12.2 Jacobians of Riemann surfaces; Exercises; 13 Moduli and deformations; 13.1 Almost-complex structures, Beltrami differentials and the integrability theorem; 13.2 Deformations and cohomology; 13.3 Appendix; Exercises. 14 Mappings and moduli14.1 Diffeomorphisms of the plane; 14.2 Braids, Dehn twists and quadratic singularities; 14.3 Hyperbolic geometry; 14.4 Compactification of the moduli space; Exercises; 15 Ordinary differential equations; 15.1 Conformal mapping; 15.2 Periods of holomorphic forms and ordinary differential equations; Exercises; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W. |
ctrlnum | (OCoLC)861200296 |
dewey-full | 515.9/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9/3 |
dewey-search | 515.9/3 |
dewey-sort | 3515.9 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05905cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861200296</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131021s2011 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">STBDS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LOA</subfield><subfield code="d">MERUC</subfield><subfield code="d">K6U</subfield><subfield code="d">ICG</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLE</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TXE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">860923315</subfield><subfield code="a">868970300</subfield><subfield code="a">1055400409</subfield><subfield code="a">1066449380</subfield><subfield code="a">1081228807</subfield><subfield code="a">1111240403</subfield><subfield code="a">1156383457</subfield><subfield code="a">1162261520</subfield><subfield code="a">1170529732</subfield><subfield code="a">1172129806</subfield><subfield code="a">1228601343</subfield><subfield code="a">1241820628</subfield><subfield code="a">1262690096</subfield><subfield code="a">1272924496</subfield><subfield code="a">1290116274</subfield><subfield code="a">1300675274</subfield><subfield code="a">1392122500</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191545849</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191545848</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299990290</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299990296</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198526391</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198526393</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199606740</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199606749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861200296</subfield><subfield code="z">(OCoLC)860923315</subfield><subfield code="z">(OCoLC)868970300</subfield><subfield code="z">(OCoLC)1055400409</subfield><subfield code="z">(OCoLC)1066449380</subfield><subfield code="z">(OCoLC)1081228807</subfield><subfield code="z">(OCoLC)1111240403</subfield><subfield code="z">(OCoLC)1156383457</subfield><subfield code="z">(OCoLC)1162261520</subfield><subfield code="z">(OCoLC)1170529732</subfield><subfield code="z">(OCoLC)1172129806</subfield><subfield code="z">(OCoLC)1228601343</subfield><subfield code="z">(OCoLC)1241820628</subfield><subfield code="z">(OCoLC)1262690096</subfield><subfield code="z">(OCoLC)1272924496</subfield><subfield code="z">(OCoLC)1290116274</subfield><subfield code="z">(OCoLC)1300675274</subfield><subfield code="z">(OCoLC)1392122500</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">530280</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA333</subfield><subfield code="b">.D66 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Donaldson, S. K.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemann surfaces /</subfield><subfield code="c">Simon Donaldson.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 286 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">22</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 282-283) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This is an authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view the book pulls together materials from global analysis topology, and algebraic geometry, and covers the essential mathematical methods and tools.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; PART I: PRELIMINARIES; 1 Holomorphic functions; 1.1 Simple examples: algebraic functions; 1.2 Analytic continuation: differential equations; Exercises; 2 Surface topology; 2.1 Classification of surfaces; 2.2 Discussion: the mapping class group; Exercises; PART II: BASIC THEORY; 3 Basic definitions; 3.1 Riemann surfaces and holomorphic maps; 3.2 Examples; Exercises; 4 Maps between Riemann surfaces; 4.1 General properties; 4.2 Monodromy and the Riemann Existence Theorem; Exercises; 5 Calculus on surfaces; 5.1 Smooth surfaces; 5.2 de Rham cohomology.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Calculus on Riemann surfacesExercises; 6 Elliptic functions and integrals; 6.1 Elliptic integrals; 6.2 The Weierstrass [Omitted] function; 6.3 Further topics; Exercises; 7 Applications of the Euler characteristic; 7.1 The Euler characteristic and meromorphic forms; 7.2 Applications; Exercises; PART III: DEEPER THEORY; 8 Meromorphic functions and the Main Theorem for compact Riemann surfaces; 8.1 Consequences of the Main Theorem; 8.2 The Riemann-Roch formula; Exercises; 9 Proof of the Main Theorem; 9.1 Discussion and motivation; 9.2 The Riesz Representation Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3 The heart of the proof9.4 Weyl's Lemma; Exercises; 10 The Uniformisation Theorem; 10.1 Statement; 10.2 Proof of the analogue of the Main Theorem; Exercises; PART IV: FURTHER DEVELOPMENTS; 11 Contrasts in Riemann surface theory; 11.1 Algebraic aspects; 11.2 Hyperbolic surfaces; Exercises; 12 Divisors, line bundles and Jacobians; 12.1 Cohomology and line bundles; 12.2 Jacobians of Riemann surfaces; Exercises; 13 Moduli and deformations; 13.1 Almost-complex structures, Beltrami differentials and the integrability theorem; 13.2 Deformations and cohomology; 13.3 Appendix; Exercises.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">14 Mappings and moduli14.1 Diffeomorphisms of the plane; 14.2 Braids, Dehn twists and quadratic singularities; 14.3 Hyperbolic geometry; 14.4 Compactification of the moduli space; Exercises; 15 Ordinary differential equations; 15.1 Conformal mapping; 15.2 Periods of holomorphic forms and ordinary differential equations; Exercises; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemann surfaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114044</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Surfaces de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann surfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4049991-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Donaldson, S.K.</subfield><subfield code="t">Riemann surfaces</subfield><subfield code="z">9780198526391</subfield><subfield code="w">(DLC) 2011283705</subfield><subfield code="w">(OCoLC)694832814</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">22.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96121759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=650774</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25718191</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3055739</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10782467</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">650774</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26426466</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000168224</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11260533</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11231350</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">riemannsurfaces0000dona</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861200296 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:35Z |
institution | BVB |
isbn | 9780191545849 0191545848 1299990290 9781299990296 |
language | English |
oclc_num | 861200296 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 286 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford graduate texts in mathematics ; |
series2 | Oxford graduate texts in mathematics ; |
spelling | Donaldson, S. K. Riemann surfaces / Simon Donaldson. Oxford ; New York : Oxford University Press, 2011. 1 online resource (xiii, 286 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford graduate texts in mathematics ; 22 Includes bibliographical references (pages 282-283) and index. Print version record. This is an authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view the book pulls together materials from global analysis topology, and algebraic geometry, and covers the essential mathematical methods and tools. Cover; Contents; PART I: PRELIMINARIES; 1 Holomorphic functions; 1.1 Simple examples: algebraic functions; 1.2 Analytic continuation: differential equations; Exercises; 2 Surface topology; 2.1 Classification of surfaces; 2.2 Discussion: the mapping class group; Exercises; PART II: BASIC THEORY; 3 Basic definitions; 3.1 Riemann surfaces and holomorphic maps; 3.2 Examples; Exercises; 4 Maps between Riemann surfaces; 4.1 General properties; 4.2 Monodromy and the Riemann Existence Theorem; Exercises; 5 Calculus on surfaces; 5.1 Smooth surfaces; 5.2 de Rham cohomology. 5.3 Calculus on Riemann surfacesExercises; 6 Elliptic functions and integrals; 6.1 Elliptic integrals; 6.2 The Weierstrass [Omitted] function; 6.3 Further topics; Exercises; 7 Applications of the Euler characteristic; 7.1 The Euler characteristic and meromorphic forms; 7.2 Applications; Exercises; PART III: DEEPER THEORY; 8 Meromorphic functions and the Main Theorem for compact Riemann surfaces; 8.1 Consequences of the Main Theorem; 8.2 The Riemann-Roch formula; Exercises; 9 Proof of the Main Theorem; 9.1 Discussion and motivation; 9.2 The Riesz Representation Theorem. 9.3 The heart of the proof9.4 Weyl's Lemma; Exercises; 10 The Uniformisation Theorem; 10.1 Statement; 10.2 Proof of the analogue of the Main Theorem; Exercises; PART IV: FURTHER DEVELOPMENTS; 11 Contrasts in Riemann surface theory; 11.1 Algebraic aspects; 11.2 Hyperbolic surfaces; Exercises; 12 Divisors, line bundles and Jacobians; 12.1 Cohomology and line bundles; 12.2 Jacobians of Riemann surfaces; Exercises; 13 Moduli and deformations; 13.1 Almost-complex structures, Beltrami differentials and the integrability theorem; 13.2 Deformations and cohomology; 13.3 Appendix; Exercises. 14 Mappings and moduli14.1 Diffeomorphisms of the plane; 14.2 Braids, Dehn twists and quadratic singularities; 14.3 Hyperbolic geometry; 14.4 Compactification of the moduli space; Exercises; 15 Ordinary differential equations; 15.1 Conformal mapping; 15.2 Periods of holomorphic forms and ordinary differential equations; Exercises; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W. Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Surfaces de Riemann. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Riemann surfaces fast Riemannsche Fläche gnd http://d-nb.info/gnd/4049991-1 Print version: Donaldson, S.K. Riemann surfaces 9780198526391 (DLC) 2011283705 (OCoLC)694832814 Oxford graduate texts in mathematics ; 22. http://id.loc.gov/authorities/names/n96121759 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=650774 Volltext |
spellingShingle | Donaldson, S. K. Riemann surfaces / Oxford graduate texts in mathematics ; Cover; Contents; PART I: PRELIMINARIES; 1 Holomorphic functions; 1.1 Simple examples: algebraic functions; 1.2 Analytic continuation: differential equations; Exercises; 2 Surface topology; 2.1 Classification of surfaces; 2.2 Discussion: the mapping class group; Exercises; PART II: BASIC THEORY; 3 Basic definitions; 3.1 Riemann surfaces and holomorphic maps; 3.2 Examples; Exercises; 4 Maps between Riemann surfaces; 4.1 General properties; 4.2 Monodromy and the Riemann Existence Theorem; Exercises; 5 Calculus on surfaces; 5.1 Smooth surfaces; 5.2 de Rham cohomology. 5.3 Calculus on Riemann surfacesExercises; 6 Elliptic functions and integrals; 6.1 Elliptic integrals; 6.2 The Weierstrass [Omitted] function; 6.3 Further topics; Exercises; 7 Applications of the Euler characteristic; 7.1 The Euler characteristic and meromorphic forms; 7.2 Applications; Exercises; PART III: DEEPER THEORY; 8 Meromorphic functions and the Main Theorem for compact Riemann surfaces; 8.1 Consequences of the Main Theorem; 8.2 The Riemann-Roch formula; Exercises; 9 Proof of the Main Theorem; 9.1 Discussion and motivation; 9.2 The Riesz Representation Theorem. 9.3 The heart of the proof9.4 Weyl's Lemma; Exercises; 10 The Uniformisation Theorem; 10.1 Statement; 10.2 Proof of the analogue of the Main Theorem; Exercises; PART IV: FURTHER DEVELOPMENTS; 11 Contrasts in Riemann surface theory; 11.1 Algebraic aspects; 11.2 Hyperbolic surfaces; Exercises; 12 Divisors, line bundles and Jacobians; 12.1 Cohomology and line bundles; 12.2 Jacobians of Riemann surfaces; Exercises; 13 Moduli and deformations; 13.1 Almost-complex structures, Beltrami differentials and the integrability theorem; 13.2 Deformations and cohomology; 13.3 Appendix; Exercises. 14 Mappings and moduli14.1 Diffeomorphisms of the plane; 14.2 Braids, Dehn twists and quadratic singularities; 14.3 Hyperbolic geometry; 14.4 Compactification of the moduli space; Exercises; 15 Ordinary differential equations; 15.1 Conformal mapping; 15.2 Periods of holomorphic forms and ordinary differential equations; Exercises; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W. Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Surfaces de Riemann. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Riemann surfaces fast Riemannsche Fläche gnd http://d-nb.info/gnd/4049991-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114044 http://d-nb.info/gnd/4049991-1 |
title | Riemann surfaces / |
title_auth | Riemann surfaces / |
title_exact_search | Riemann surfaces / |
title_full | Riemann surfaces / Simon Donaldson. |
title_fullStr | Riemann surfaces / Simon Donaldson. |
title_full_unstemmed | Riemann surfaces / Simon Donaldson. |
title_short | Riemann surfaces / |
title_sort | riemann surfaces |
topic | Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Surfaces de Riemann. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Riemann surfaces fast Riemannsche Fläche gnd http://d-nb.info/gnd/4049991-1 |
topic_facet | Riemann surfaces. Surfaces de Riemann. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Riemann surfaces Riemannsche Fläche |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=650774 |
work_keys_str_mv | AT donaldsonsk riemannsurfaces |