Lyapunov stability of non-autonomous dynamical systems /:
The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these wo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers, Inc.,
[2013]
|
Schriftenreihe: | Mathematics research developments series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the. |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references (pages 255-267) and index. |
ISBN: | 9781626189416 1626189412 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn857966247 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 130506t20132013nyu ob 001 0 eng | ||
010 | |a 2020677086 | ||
040 | |a DLC |b eng |e rda |c DLC |d N$T |d E7B |d OCLCF |d EBLCP |d AGLDB |d VTS |d AU@ |d STF |d M8D |d YDXCP |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 855524856 |a 923670339 |a 928194257 | ||
020 | |a 9781626189416 |q (ebook) | ||
020 | |a 1626189412 | ||
020 | |z 1626189269 |q (hardcover) | ||
020 | |z 9781626189263 |q (hardcover) | ||
035 | |a (OCoLC)857966247 |z (OCoLC)855524856 |z (OCoLC)923670339 |z (OCoLC)928194257 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QA871 |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
082 | 7 | |a 515/.392 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Cheban, David N., |e author. | |
245 | 1 | 0 | |a Lyapunov stability of non-autonomous dynamical systems / |c David N. Cheban. |
264 | 1 | |a New York : |b Nova Science Publishers, Inc., |c [2013] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics research developments | |
504 | |a Includes bibliographical references (pages 255-267) and index. | ||
505 | 0 | |a Asymptotic stability of autonomous dynamical systems -- Lyapunov stability of non-autonomous dynamical systems -- Stability of linear non-autonomous dynamical systems -- Absolute asymptotic stability of differential (difference) equations and inclusions. | |
588 | |a Description based on print version record. | ||
520 | |a The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the. | ||
650 | 0 | |a Stability |x Mathematical models. | |
650 | 0 | |a Lyapunov stability. |0 http://id.loc.gov/authorities/subjects/sh95003362 | |
650 | 6 | |a Stabilité |x Modèles mathématiques. | |
650 | 6 | |a Stabilité au sens de Liapounov. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Lyapunov stability |2 fast | |
650 | 7 | |a Stability |x Mathematical models |2 fast | |
758 | |i has work: |a Lyapunov stability of non-autonomous dynamical systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGyBHrTHqR7MMC7WM4FMyd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Lyapunov stability of non-autonomous dynamical systems |d New York : Nova Science Publishers, Inc., [2013] |z 9781626189263 (hardcover) |w (DLC) 2013016528 |
830 | 0 | |a Mathematics research developments series. |0 http://id.loc.gov/authorities/names/no2009139785 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=630485 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 11062589 | ||
938 | |a EBSCOhost |b EBSC |n 630485 | ||
938 | |a ebrary |b EBRY |n ebr10744844 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3022987 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn857966247 |
---|---|
_version_ | 1816882244108681216 |
adam_text | |
any_adam_object | |
author | Cheban, David N. |
author_facet | Cheban, David N. |
author_role | aut |
author_sort | Cheban, David N. |
author_variant | d n c dn dnc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA871 |
callnumber-raw | QA871 |
callnumber-search | QA871 |
callnumber-sort | QA 3871 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Asymptotic stability of autonomous dynamical systems -- Lyapunov stability of non-autonomous dynamical systems -- Stability of linear non-autonomous dynamical systems -- Absolute asymptotic stability of differential (difference) equations and inclusions. |
ctrlnum | (OCoLC)857966247 |
dewey-full | 515/.392 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.392 |
dewey-search | 515/.392 |
dewey-sort | 3515 3392 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03422cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn857966247</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">130506t20132013nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2020677086</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AGLDB</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">855524856</subfield><subfield code="a">923670339</subfield><subfield code="a">928194257</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781626189416</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1626189412</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1626189269</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781626189263</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)857966247</subfield><subfield code="z">(OCoLC)855524856</subfield><subfield code="z">(OCoLC)923670339</subfield><subfield code="z">(OCoLC)928194257</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QA871</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.392</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheban, David N.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lyapunov stability of non-autonomous dynamical systems /</subfield><subfield code="c">David N. Cheban.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics research developments</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 255-267) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Asymptotic stability of autonomous dynamical systems -- Lyapunov stability of non-autonomous dynamical systems -- Stability of linear non-autonomous dynamical systems -- Absolute asymptotic stability of differential (difference) equations and inclusions.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stability</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lyapunov stability.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95003362</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Stabilité</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Stabilité au sens de Liapounov.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lyapunov stability</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stability</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lyapunov stability of non-autonomous dynamical systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGyBHrTHqR7MMC7WM4FMyd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Lyapunov stability of non-autonomous dynamical systems</subfield><subfield code="d">New York : Nova Science Publishers, Inc., [2013]</subfield><subfield code="z">9781626189263 (hardcover)</subfield><subfield code="w">(DLC) 2013016528</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics research developments series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009139785</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=630485</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11062589</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">630485</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10744844</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3022987</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn857966247 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:32Z |
institution | BVB |
isbn | 9781626189416 1626189412 |
language | English |
lccn | 2020677086 |
oclc_num | 857966247 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
series | Mathematics research developments series. |
series2 | Mathematics research developments |
spelling | Cheban, David N., author. Lyapunov stability of non-autonomous dynamical systems / David N. Cheban. New York : Nova Science Publishers, Inc., [2013] 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics research developments Includes bibliographical references (pages 255-267) and index. Asymptotic stability of autonomous dynamical systems -- Lyapunov stability of non-autonomous dynamical systems -- Stability of linear non-autonomous dynamical systems -- Absolute asymptotic stability of differential (difference) equations and inclusions. Description based on print version record. The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the. Stability Mathematical models. Lyapunov stability. http://id.loc.gov/authorities/subjects/sh95003362 Stabilité Modèles mathématiques. Stabilité au sens de Liapounov. MATHEMATICS Differential Equations General. bisacsh Lyapunov stability fast Stability Mathematical models fast has work: Lyapunov stability of non-autonomous dynamical systems (Text) https://id.oclc.org/worldcat/entity/E39PCGyBHrTHqR7MMC7WM4FMyd https://id.oclc.org/worldcat/ontology/hasWork Print version: Lyapunov stability of non-autonomous dynamical systems New York : Nova Science Publishers, Inc., [2013] 9781626189263 (hardcover) (DLC) 2013016528 Mathematics research developments series. http://id.loc.gov/authorities/names/no2009139785 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=630485 Volltext |
spellingShingle | Cheban, David N. Lyapunov stability of non-autonomous dynamical systems / Mathematics research developments series. Asymptotic stability of autonomous dynamical systems -- Lyapunov stability of non-autonomous dynamical systems -- Stability of linear non-autonomous dynamical systems -- Absolute asymptotic stability of differential (difference) equations and inclusions. Stability Mathematical models. Lyapunov stability. http://id.loc.gov/authorities/subjects/sh95003362 Stabilité Modèles mathématiques. Stabilité au sens de Liapounov. MATHEMATICS Differential Equations General. bisacsh Lyapunov stability fast Stability Mathematical models fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh95003362 |
title | Lyapunov stability of non-autonomous dynamical systems / |
title_auth | Lyapunov stability of non-autonomous dynamical systems / |
title_exact_search | Lyapunov stability of non-autonomous dynamical systems / |
title_full | Lyapunov stability of non-autonomous dynamical systems / David N. Cheban. |
title_fullStr | Lyapunov stability of non-autonomous dynamical systems / David N. Cheban. |
title_full_unstemmed | Lyapunov stability of non-autonomous dynamical systems / David N. Cheban. |
title_short | Lyapunov stability of non-autonomous dynamical systems / |
title_sort | lyapunov stability of non autonomous dynamical systems |
topic | Stability Mathematical models. Lyapunov stability. http://id.loc.gov/authorities/subjects/sh95003362 Stabilité Modèles mathématiques. Stabilité au sens de Liapounov. MATHEMATICS Differential Equations General. bisacsh Lyapunov stability fast Stability Mathematical models fast |
topic_facet | Stability Mathematical models. Lyapunov stability. Stabilité Modèles mathématiques. Stabilité au sens de Liapounov. MATHEMATICS Differential Equations General. Lyapunov stability Stability Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=630485 |
work_keys_str_mv | AT chebandavidn lyapunovstabilityofnonautonomousdynamicalsystems |