The axiom of determinacy, forcing axioms, and the nonstationary ideal /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
W. de Gruyter,
1999.
|
Schriftenreihe: | De Gruyter series in logic and its applications ;
1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (vi, 934 pages) |
Bibliographie: | Includes bibliographical references (pages 927-929) and index. |
ISBN: | 9783110804737 3110804735 |
ISSN: | 1438-1893 ; |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn857769673 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130909s1999 gw ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d OCLCF |d YDXCP |d E7B |d OCLCQ |d EBLCP |d DEBSZ |d AGLDB |d OCLCQ |d DEGRU |d I9W |d I8H |d VNS |d VTS |d COCUF |d STF |d MERUC |d ZCU |d VT2 |d ICG |d DEBBG |d LOA |d OCLCQ |d DKC |d OCLCQ |d M8D |d K6U |d AU@ |d ADU |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 868973740 |a 922947712 |a 1055597268 |a 1055760986 |a 1056578261 |a 1082831235 |a 1113385292 | ||
020 | |a 9783110804737 |q (electronic bk.) | ||
020 | |a 3110804735 |q (electronic bk.) | ||
020 | |z 311015708X | ||
020 | |z 9783110157086 | ||
035 | |a (OCoLC)857769673 |z (OCoLC)868973740 |z (OCoLC)922947712 |z (OCoLC)1055597268 |z (OCoLC)1055760986 |z (OCoLC)1056578261 |z (OCoLC)1082831235 |z (OCoLC)1113385292 | ||
037 | |n Title subscribed to via ProQuest Academic Complete | ||
050 | 4 | |a QA9.7 |b .W66 1999eb | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 22 | |
084 | |a 31.10 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Woodin, W. H. |q (W. Hugh) |1 https://id.oclc.org/worldcat/entity/E39PBJdrHdBXMDfgQmMjd8gHYP |0 http://id.loc.gov/authorities/names/n86039104 | |
245 | 1 | 4 | |a The axiom of determinacy, forcing axioms, and the nonstationary ideal / |c W. Hugh Woodin. |
264 | 1 | |a Berlin ; |a New York : |b W. de Gruyter, |c 1999. | |
300 | |a 1 online resource (vi, 934 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a De Gruyter series in logic and its applications, |x 1438-1893 ; |v 1 | |
504 | |a Includes bibliographical references (pages 927-929) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures | |
505 | 8 | |a 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles | |
505 | 8 | |a 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+ | |
505 | 8 | |a 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index | |
650 | 0 | |a Forcing (Model theory) |0 http://id.loc.gov/authorities/subjects/sh85050461 | |
650 | 6 | |a Forcing (Théorie des modèles) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Forcing (Model theory) |2 fast | |
650 | 7 | |a Lógica matemática. |2 larpcal | |
650 | 7 | |a Teoria dos conjuntos. |2 larpcal | |
776 | 0 | 8 | |i Print version: |a Woodin, W.H. (W. Hugh). |t Axiom of determinacy, forcing axioms, and the nonstationary ideal |z 311015708X |w (DLC) 99023307 |w (OCoLC)41142955 |
830 | 0 | |a De Gruyter series in logic and its applications ; |v 1. |x 1438-1893 |0 http://id.loc.gov/authorities/names/n99027177 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693 |3 Volltext |
880 | 0 | 0 | |6 505-01/(S |t Frontmatter -- |t 1 Introduction -- |t 2 Preliminaries -- |t 3 The nonstationary ideal -- |t 4 The ℙmax-extension -- |t 5 Applications -- |t 6 ℙmax variations. 6.1 2ℙmax -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.1 ℚmax -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.2 ℚ*max -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.3 2ℚmax -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.4 Weak Kurepa trees and ℚmax -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.5 KTℚmax -- |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.6 Null sets and the nonstationary ideal -- |t 6 ℙmax variations. 6.3 Nonregular ultrafilters on ω1 -- |t 7 Conditional variations -- |t 8 ♣ principles for ω1. 8.1 Condensation Principles -- |t 8 ♣ principles for ω1. 8.2 ℙ♣NSmax -- |t 8 ♣ principles for ω1. 8.3 The principles, ♣+NS and ♣++NS -- |t 9 Extensions of L(Γ, ℝ). 9.1 AD+ -- |t 9 Extensions of L(Γ, ℝ). 9.2 The ℙmax-extension of L(Γ, ℝ) -- |t 9 Extensions of L(Γ, ℝ). 9.3 The ℚmax-extension of L(Γ, ℝ) -- |t 9 Extensions of L(Γ, ℝ). 9.4 Chang's Conjecture -- |t 9 Extensions of L(Γ, ℝ). 9.5 Weak and Strong Reflection Principles -- |t 9 Extensions of L(Γ, ℝ). 9.6 Strong Chang's Conjecture -- |t 9 Extensions of L(Γ, ℝ). 9.7 Ideals on ω2 -- |t 10 Further results. 10.1 Forcing notions and large cardinals -- |t 10 Further results. 10.2 Coding into L(P(ω1)) -- |t 10 Further results. 10.3 Bounded forms of Martin's Maximum -- |t 10 Further results. 10.4 Ω-logic -- |t 10 Further results. 10.5 Ω-logic and the Continuum Hypothesis -- |t 10 Further results. 10.6 The Axiom (*)+ -- |t 10 Further results. 10.7 The Effective Singular Cardinals Hypothesis -- |t 11 Questions -- |t Bibliography -- |t Index. |
938 | |a De Gruyter |b DEGR |n 9783110804737 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3044462 | ||
938 | |a ebrary |b EBRY |n ebr10789491 | ||
938 | |a EBSCOhost |b EBSC |n 627693 | ||
938 | |a YBP Library Services |b YANK |n 10819153 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn857769673 |
---|---|
_version_ | 1816882243916791808 |
adam_text | |
any_adam_object | |
author | Woodin, W. H. (W. Hugh) |
author_GND | http://id.loc.gov/authorities/names/n86039104 |
author_facet | Woodin, W. H. (W. Hugh) |
author_role | |
author_sort | Woodin, W. H. |
author_variant | w h w wh whw |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.7 .W66 1999eb |
callnumber-search | QA9.7 .W66 1999eb |
callnumber-sort | QA 19.7 W66 41999EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+ 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index |
ctrlnum | (OCoLC)857769673 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06599cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn857769673</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130909s1999 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">I9W</subfield><subfield code="d">I8H</subfield><subfield code="d">VNS</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">VT2</subfield><subfield code="d">ICG</subfield><subfield code="d">DEBBG</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">K6U</subfield><subfield code="d">AU@</subfield><subfield code="d">ADU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">868973740</subfield><subfield code="a">922947712</subfield><subfield code="a">1055597268</subfield><subfield code="a">1055760986</subfield><subfield code="a">1056578261</subfield><subfield code="a">1082831235</subfield><subfield code="a">1113385292</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110804737</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110804735</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311015708X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110157086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)857769673</subfield><subfield code="z">(OCoLC)868973740</subfield><subfield code="z">(OCoLC)922947712</subfield><subfield code="z">(OCoLC)1055597268</subfield><subfield code="z">(OCoLC)1055760986</subfield><subfield code="z">(OCoLC)1056578261</subfield><subfield code="z">(OCoLC)1082831235</subfield><subfield code="z">(OCoLC)1113385292</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="n">Title subscribed to via ProQuest Academic Complete</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.7</subfield><subfield code="b">.W66 1999eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.10</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Woodin, W. H.</subfield><subfield code="q">(W. Hugh)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdrHdBXMDfgQmMjd8gHYP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86039104</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The axiom of determinacy, forcing axioms, and the nonstationary ideal /</subfield><subfield code="c">W. Hugh Woodin.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">W. de Gruyter,</subfield><subfield code="c">1999.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 934 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in logic and its applications,</subfield><subfield code="x">1438-1893 ;</subfield><subfield code="v">1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 927-929) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forcing (Model theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85050461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Forcing (Théorie des modèles)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing (Model theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lógica matemática.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos conjuntos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Woodin, W.H. (W. Hugh).</subfield><subfield code="t">Axiom of determinacy, forcing axioms, and the nonstationary ideal</subfield><subfield code="z">311015708X</subfield><subfield code="w">(DLC) 99023307</subfield><subfield code="w">(OCoLC)41142955</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in logic and its applications ;</subfield><subfield code="v">1.</subfield><subfield code="x">1438-1893</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99027177</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="t">Frontmatter --</subfield><subfield code="t">1 Introduction --</subfield><subfield code="t">2 Preliminaries --</subfield><subfield code="t">3 The nonstationary ideal --</subfield><subfield code="t">4 The ℙmax-extension --</subfield><subfield code="t">5 Applications --</subfield><subfield code="t">6 ℙmax variations. 6.1 2ℙmax --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.1 ℚmax --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.2 ℚ*max --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.3 2ℚmax --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.4 Weak Kurepa trees and ℚmax --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.5 KTℚmax --</subfield><subfield code="t">6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.6 Null sets and the nonstationary ideal --</subfield><subfield code="t">6 ℙmax variations. 6.3 Nonregular ultrafilters on ω1 --</subfield><subfield code="t">7 Conditional variations --</subfield><subfield code="t">8 ♣ principles for ω1. 8.1 Condensation Principles --</subfield><subfield code="t">8 ♣ principles for ω1. 8.2 ℙ♣NSmax --</subfield><subfield code="t">8 ♣ principles for ω1. 8.3 The principles, ♣+NS and ♣++NS --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.1 AD+ --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.2 The ℙmax-extension of L(Γ, ℝ) --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.3 The ℚmax-extension of L(Γ, ℝ) --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.4 Chang's Conjecture --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.5 Weak and Strong Reflection Principles --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.6 Strong Chang's Conjecture --</subfield><subfield code="t">9 Extensions of L(Γ, ℝ). 9.7 Ideals on ω2 --</subfield><subfield code="t">10 Further results. 10.1 Forcing notions and large cardinals --</subfield><subfield code="t">10 Further results. 10.2 Coding into L(P(ω1)) --</subfield><subfield code="t">10 Further results. 10.3 Bounded forms of Martin's Maximum --</subfield><subfield code="t">10 Further results. 10.4 Ω-logic --</subfield><subfield code="t">10 Further results. 10.5 Ω-logic and the Continuum Hypothesis --</subfield><subfield code="t">10 Further results. 10.6 The Axiom (*)+ --</subfield><subfield code="t">10 Further results. 10.7 The Effective Singular Cardinals Hypothesis --</subfield><subfield code="t">11 Questions --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110804737</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3044462</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10789491</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">627693</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10819153</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn857769673 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:31Z |
institution | BVB |
isbn | 9783110804737 3110804735 |
issn | 1438-1893 ; |
language | English |
oclc_num | 857769673 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 934 pages) |
psigel | ZDB-4-EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | W. de Gruyter, |
record_format | marc |
series | De Gruyter series in logic and its applications ; |
series2 | De Gruyter series in logic and its applications, |
spelling | Woodin, W. H. (W. Hugh) https://id.oclc.org/worldcat/entity/E39PBJdrHdBXMDfgQmMjd8gHYP http://id.loc.gov/authorities/names/n86039104 The axiom of determinacy, forcing axioms, and the nonstationary ideal / W. Hugh Woodin. Berlin ; New York : W. de Gruyter, 1999. 1 online resource (vi, 934 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file De Gruyter series in logic and its applications, 1438-1893 ; 1 Includes bibliographical references (pages 927-929) and index. Print version record. 880-01 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+ 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Forcing (Théorie des modèles) MATHEMATICS General. bisacsh Forcing (Model theory) fast Lógica matemática. larpcal Teoria dos conjuntos. larpcal Print version: Woodin, W.H. (W. Hugh). Axiom of determinacy, forcing axioms, and the nonstationary ideal 311015708X (DLC) 99023307 (OCoLC)41142955 De Gruyter series in logic and its applications ; 1. 1438-1893 http://id.loc.gov/authorities/names/n99027177 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693 Volltext 505-01/(S Frontmatter -- 1 Introduction -- 2 Preliminaries -- 3 The nonstationary ideal -- 4 The ℙmax-extension -- 5 Applications -- 6 ℙmax variations. 6.1 2ℙmax -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.1 ℚmax -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.2 ℚ*max -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.3 2ℚmax -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.4 Weak Kurepa trees and ℚmax -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.5 KTℚmax -- 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.6 Null sets and the nonstationary ideal -- 6 ℙmax variations. 6.3 Nonregular ultrafilters on ω1 -- 7 Conditional variations -- 8 ♣ principles for ω1. 8.1 Condensation Principles -- 8 ♣ principles for ω1. 8.2 ℙ♣NSmax -- 8 ♣ principles for ω1. 8.3 The principles, ♣+NS and ♣++NS -- 9 Extensions of L(Γ, ℝ). 9.1 AD+ -- 9 Extensions of L(Γ, ℝ). 9.2 The ℙmax-extension of L(Γ, ℝ) -- 9 Extensions of L(Γ, ℝ). 9.3 The ℚmax-extension of L(Γ, ℝ) -- 9 Extensions of L(Γ, ℝ). 9.4 Chang's Conjecture -- 9 Extensions of L(Γ, ℝ). 9.5 Weak and Strong Reflection Principles -- 9 Extensions of L(Γ, ℝ). 9.6 Strong Chang's Conjecture -- 9 Extensions of L(Γ, ℝ). 9.7 Ideals on ω2 -- 10 Further results. 10.1 Forcing notions and large cardinals -- 10 Further results. 10.2 Coding into L(P(ω1)) -- 10 Further results. 10.3 Bounded forms of Martin's Maximum -- 10 Further results. 10.4 Ω-logic -- 10 Further results. 10.5 Ω-logic and the Continuum Hypothesis -- 10 Further results. 10.6 The Axiom (*)+ -- 10 Further results. 10.7 The Effective Singular Cardinals Hypothesis -- 11 Questions -- Bibliography -- Index. |
spellingShingle | Woodin, W. H. (W. Hugh) The axiom of determinacy, forcing axioms, and the nonstationary ideal / De Gruyter series in logic and its applications ; 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+ 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Forcing (Théorie des modèles) MATHEMATICS General. bisacsh Forcing (Model theory) fast Lógica matemática. larpcal Teoria dos conjuntos. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85050461 |
title | The axiom of determinacy, forcing axioms, and the nonstationary ideal / |
title_auth | The axiom of determinacy, forcing axioms, and the nonstationary ideal / |
title_exact_search | The axiom of determinacy, forcing axioms, and the nonstationary ideal / |
title_full | The axiom of determinacy, forcing axioms, and the nonstationary ideal / W. Hugh Woodin. |
title_fullStr | The axiom of determinacy, forcing axioms, and the nonstationary ideal / W. Hugh Woodin. |
title_full_unstemmed | The axiom of determinacy, forcing axioms, and the nonstationary ideal / W. Hugh Woodin. |
title_short | The axiom of determinacy, forcing axioms, and the nonstationary ideal / |
title_sort | axiom of determinacy forcing axioms and the nonstationary ideal |
topic | Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Forcing (Théorie des modèles) MATHEMATICS General. bisacsh Forcing (Model theory) fast Lógica matemática. larpcal Teoria dos conjuntos. larpcal |
topic_facet | Forcing (Model theory) Forcing (Théorie des modèles) MATHEMATICS General. Lógica matemática. Teoria dos conjuntos. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=627693 |
work_keys_str_mv | AT woodinwh theaxiomofdeterminacyforcingaxiomsandthenonstationaryideal AT woodinwh axiomofdeterminacyforcingaxiomsandthenonstationaryideal |