The maximal subgroups of the low-dimensional finite classical groups /:
Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2013.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
407. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references (pages 429-434) and index. |
ISBN: | 9781139192576 1139192574 9781461944799 1461944791 9781107274945 110727494X 9781107272149 1107272149 9781107273719 1107273714 1107271622 9781107271623 1107276977 9781107276970 1107278201 9781107278202 1139891952 9781139891950 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn856432113 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 130718s2013 enk ob 001 0 eng d | ||
040 | |a NhCcYBP |b eng |e pn |c N15 |d OCLCO |d YDXCP |d N$T |d MHW |d CDX |d CAMBR |d IDEBK |d MEAUC |d EBLCP |d COO |d UMI |d DEBSZ |d DEBBG |d OCLCQ |d OCLCF |d OCLCQ |d UAB |d OCLCQ |d CEF |d OTZ |d WYU |d UKAHL |d OCLCQ |d A6Q |d HS0 |d AGLDB |d LOA |d OCLCQ |d LVT |d LUN |d QGK |d OCLCQ |d OCLCO |d DKU |d OCLCO |d S2H |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d SXB | ||
016 | 7 | |a 016415941 |2 Uk | |
019 | |a 855731611 |a 859536422 |a 872140254 |a 1032365905 |a 1032604815 |a 1041496646 |a 1109295786 |a 1122194600 |a 1152748809 |a 1161640818 |a 1167463885 |a 1182013098 |a 1192527398 |a 1241800459 |a 1250591705 |a 1259119102 |a 1287176804 |a 1299426271 |a 1299454481 | ||
020 | |a 9781139192576 |q (electronic bk.) | ||
020 | |a 1139192574 |q (electronic bk.) | ||
020 | |a 9781461944799 |q (electronic bk.) | ||
020 | |a 1461944791 |q (electronic bk.) | ||
020 | |a 9781107274945 | ||
020 | |a 110727494X | ||
020 | |a 9781107272149 | ||
020 | |a 1107272149 | ||
020 | |a 9781107273719 |q (e-book) | ||
020 | |a 1107273714 |q (e-book) | ||
020 | |a 1107271622 | ||
020 | |a 9781107271623 | ||
020 | |a 1107276977 | ||
020 | |a 9781107276970 | ||
020 | |a 1107278201 | ||
020 | |a 9781107278202 | ||
020 | |a 1139891952 | ||
020 | |a 9781139891950 | ||
020 | |z 9780521138604 | ||
020 | |z 0521138604 | ||
035 | |a (OCoLC)856432113 |z (OCoLC)855731611 |z (OCoLC)859536422 |z (OCoLC)872140254 |z (OCoLC)1032365905 |z (OCoLC)1032604815 |z (OCoLC)1041496646 |z (OCoLC)1109295786 |z (OCoLC)1122194600 |z (OCoLC)1152748809 |z (OCoLC)1161640818 |z (OCoLC)1167463885 |z (OCoLC)1182013098 |z (OCoLC)1192527398 |z (OCoLC)1241800459 |z (OCoLC)1250591705 |z (OCoLC)1259119102 |z (OCoLC)1287176804 |z (OCoLC)1299426271 |z (OCoLC)1299454481 | ||
037 | |a CL0500000402 |b Safari Books Online | ||
050 | 4 | |a QA177 |b .B73 2013 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.23 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Bray, John N. | |
245 | 1 | 4 | |a The maximal subgroups of the low-dimensional finite classical groups / |c John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. |
260 | |a Cambridge : |b Cambridge University Press, |c 2013. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 407 | |
588 | 0 | |a Online resource; title from digital title page (viewed on July 18, 2013). | |
504 | |a Includes bibliographical references (pages 429-434) and index. | ||
520 | |a Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods. | ||
505 | 0 | |a Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem. | |
505 | 8 | |a 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions. | |
546 | |a English. | ||
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Maximal subgroups. |0 http://id.loc.gov/authorities/subjects/sh87001592 | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Sous-groupes maximaux. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Grupos finitos |2 embne | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Maximal subgroups |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Holt, Derek F. | |
700 | 1 | |a Roney-Dougal, Colva M. | |
758 | |i has work: |a The maximal subgroups of the low-dimensional finite classical groups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfHDpMgcjPqk7Gqhtt8BX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bray, John N. (John Nicholas). |t Maximal subgroups of the low-dimensional finite classical groups |z 9780521138604 |w (OCoLC)844872000 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 407. |0 http://id.loc.gov/authorities/names/n42015587 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592736 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592736 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25296574 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385982 | ||
938 | |a Coutts Information Services |b COUT |n 26532374 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1303557 | ||
938 | |a EBSCOhost |b EBSC |n 592736 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26532374 | ||
938 | |a YBP Library Services |b YANK |n 11203835 | ||
938 | |a YBP Library Services |b YANK |n 11230699 | ||
938 | |a YBP Library Services |b YANK |n 11204763 | ||
938 | |a YBP Library Services |b YANK |n 10859017 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn856432113 |
---|---|
_version_ | 1829094967672307712 |
adam_text | |
any_adam_object | |
author | Bray, John N. |
author2 | Holt, Derek F. Roney-Dougal, Colva M. |
author2_role | |
author2_variant | d f h df dfh c m r d cmr cmrd |
author_facet | Bray, John N. Holt, Derek F. Roney-Dougal, Colva M. |
author_role | |
author_sort | Bray, John N. |
author_variant | j n b jn jnb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .B73 2013 |
callnumber-search | QA177 .B73 2013 |
callnumber-sort | QA 3177 B73 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem. 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions. |
ctrlnum | (OCoLC)856432113 |
dewey-full | 512/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.23 |
dewey-search | 512/.23 |
dewey-sort | 3512 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05654cam a2200925Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn856432113</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">130718s2013 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NhCcYBP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N15</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">MHW</subfield><subfield code="d">CDX</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MEAUC</subfield><subfield code="d">EBLCP</subfield><subfield code="d">COO</subfield><subfield code="d">UMI</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CEF</subfield><subfield code="d">OTZ</subfield><subfield code="d">WYU</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">HS0</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">LUN</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DKU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016415941</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">855731611</subfield><subfield code="a">859536422</subfield><subfield code="a">872140254</subfield><subfield code="a">1032365905</subfield><subfield code="a">1032604815</subfield><subfield code="a">1041496646</subfield><subfield code="a">1109295786</subfield><subfield code="a">1122194600</subfield><subfield code="a">1152748809</subfield><subfield code="a">1161640818</subfield><subfield code="a">1167463885</subfield><subfield code="a">1182013098</subfield><subfield code="a">1192527398</subfield><subfield code="a">1241800459</subfield><subfield code="a">1250591705</subfield><subfield code="a">1259119102</subfield><subfield code="a">1287176804</subfield><subfield code="a">1299426271</subfield><subfield code="a">1299454481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139192576</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139192574</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461944799</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1461944791</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107274945</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110727494X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107272149</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107272149</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107273719</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107273714</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107271622</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107271623</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107276977</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107276970</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107278201</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107278202</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139891952</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139891950</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521138604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521138604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856432113</subfield><subfield code="z">(OCoLC)855731611</subfield><subfield code="z">(OCoLC)859536422</subfield><subfield code="z">(OCoLC)872140254</subfield><subfield code="z">(OCoLC)1032365905</subfield><subfield code="z">(OCoLC)1032604815</subfield><subfield code="z">(OCoLC)1041496646</subfield><subfield code="z">(OCoLC)1109295786</subfield><subfield code="z">(OCoLC)1122194600</subfield><subfield code="z">(OCoLC)1152748809</subfield><subfield code="z">(OCoLC)1161640818</subfield><subfield code="z">(OCoLC)1167463885</subfield><subfield code="z">(OCoLC)1182013098</subfield><subfield code="z">(OCoLC)1192527398</subfield><subfield code="z">(OCoLC)1241800459</subfield><subfield code="z">(OCoLC)1250591705</subfield><subfield code="z">(OCoLC)1259119102</subfield><subfield code="z">(OCoLC)1287176804</subfield><subfield code="z">(OCoLC)1299426271</subfield><subfield code="z">(OCoLC)1299454481</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000402</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.B73 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bray, John N.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The maximal subgroups of the low-dimensional finite classical groups /</subfield><subfield code="c">John N. Bray, Derek F. Holt, Colva M. Roney-Dougal.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">407</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on July 18, 2013).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 429-434) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Maximal subgroups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87001592</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sous-groupes maximaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximal subgroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holt, Derek F.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roney-Dougal, Colva M.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The maximal subgroups of the low-dimensional finite classical groups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfHDpMgcjPqk7Gqhtt8BX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bray, John N. (John Nicholas).</subfield><subfield code="t">Maximal subgroups of the low-dimensional finite classical groups</subfield><subfield code="z">9780521138604</subfield><subfield code="w">(OCoLC)844872000</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">407.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592736</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592736</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25296574</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385982</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26532374</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1303557</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">592736</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26532374</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11203835</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11230699</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11204763</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10859017</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn856432113 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:41:32Z |
institution | BVB |
isbn | 9781139192576 1139192574 9781461944799 1461944791 9781107274945 110727494X 9781107272149 1107272149 9781107273719 1107273714 1107271622 9781107271623 1107276977 9781107276970 1107278201 9781107278202 1139891952 9781139891950 |
language | English |
oclc_num | 856432113 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Bray, John N. The maximal subgroups of the low-dimensional finite classical groups / John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. Cambridge : Cambridge University Press, 2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 407 Online resource; title from digital title page (viewed on July 18, 2013). Includes bibliographical references (pages 429-434) and index. Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods. Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem. 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions. English. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Maximal subgroups. http://id.loc.gov/authorities/subjects/sh87001592 Groupes finis. Sous-groupes maximaux. MATHEMATICS Algebra Intermediate. bisacsh Grupos finitos embne Finite groups fast Maximal subgroups fast Electronic book. Holt, Derek F. Roney-Dougal, Colva M. has work: The maximal subgroups of the low-dimensional finite classical groups (Text) https://id.oclc.org/worldcat/entity/E39PCGfHDpMgcjPqk7Gqhtt8BX https://id.oclc.org/worldcat/ontology/hasWork Print version: Bray, John N. (John Nicholas). Maximal subgroups of the low-dimensional finite classical groups 9780521138604 (OCoLC)844872000 London Mathematical Society lecture note series ; 407. http://id.loc.gov/authorities/names/n42015587 |
spellingShingle | Bray, John N. The maximal subgroups of the low-dimensional finite classical groups / London Mathematical Society lecture note series ; Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem. 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Maximal subgroups. http://id.loc.gov/authorities/subjects/sh87001592 Groupes finis. Sous-groupes maximaux. MATHEMATICS Algebra Intermediate. bisacsh Grupos finitos embne Finite groups fast Maximal subgroups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh87001592 |
title | The maximal subgroups of the low-dimensional finite classical groups / |
title_auth | The maximal subgroups of the low-dimensional finite classical groups / |
title_exact_search | The maximal subgroups of the low-dimensional finite classical groups / |
title_full | The maximal subgroups of the low-dimensional finite classical groups / John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. |
title_fullStr | The maximal subgroups of the low-dimensional finite classical groups / John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. |
title_full_unstemmed | The maximal subgroups of the low-dimensional finite classical groups / John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. |
title_short | The maximal subgroups of the low-dimensional finite classical groups / |
title_sort | maximal subgroups of the low dimensional finite classical groups |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Maximal subgroups. http://id.loc.gov/authorities/subjects/sh87001592 Groupes finis. Sous-groupes maximaux. MATHEMATICS Algebra Intermediate. bisacsh Grupos finitos embne Finite groups fast Maximal subgroups fast |
topic_facet | Finite groups. Maximal subgroups. Groupes finis. Sous-groupes maximaux. MATHEMATICS Algebra Intermediate. Grupos finitos Finite groups Maximal subgroups Electronic book. |
work_keys_str_mv | AT brayjohnn themaximalsubgroupsofthelowdimensionalfiniteclassicalgroups AT holtderekf themaximalsubgroupsofthelowdimensionalfiniteclassicalgroups AT roneydougalcolvam themaximalsubgroupsofthelowdimensionalfiniteclassicalgroups AT brayjohnn maximalsubgroupsofthelowdimensionalfiniteclassicalgroups AT holtderekf maximalsubgroupsofthelowdimensionalfiniteclassicalgroups AT roneydougalcolvam maximalsubgroupsofthelowdimensionalfiniteclassicalgroups |