Product integration with applications to differential equations /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York, NY, USA :
Cambridge University Press,
1984.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 10. Encyclopedia of mathematics and its applications. Section, Analysis. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Imprint and ISBN from label on title page verso. Imprint on t.p.: Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, 1979. Publication taken over by Cambridge University Press in 1984 with a new copyright date. |
Beschreibung: | 1 online resource (xxii, 253 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 204-213) and index. |
ISBN: | 9781461938170 1461938171 9781107340701 1107340705 9781139886109 113988610X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn856017735 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130819r19841979enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d OCLCQ |d UKAHL |d AJS |d OCLCO |d YDX |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
019 | |a 847520372 |a 1124363937 | ||
020 | |a 9781461938170 |q (electronic bk.) | ||
020 | |a 1461938171 |q (electronic bk.) | ||
020 | |a 9781107340701 |q (electronic bk.) | ||
020 | |a 1107340705 |q (electronic bk.) | ||
020 | |a 9781139886109 |q (e-book) | ||
020 | |a 113988610X | ||
020 | |z 0521302307 | ||
020 | |z 9780521302302 | ||
020 | |z 9780201135091 |q (U.S.) | ||
035 | |a (OCoLC)856017735 |z (OCoLC)847520372 |z (OCoLC)1124363937 | ||
050 | 4 | |a QA371 |b .D64 1984eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.3/5 |2 22 | |
084 | |a SK 500 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Dollard, John D. | |
245 | 1 | 0 | |a Product integration with applications to differential equations / |c John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani. |
260 | |a Cambridge [Cambridgeshire] ; |a New York, NY, USA : |b Cambridge University Press, |c 1984. | ||
300 | |a 1 online resource (xxii, 253 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v v. 10. Section, Analysis | |
500 | |a Imprint and ISBN from label on title page verso. Imprint on t.p.: Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, 1979. | ||
500 | |a Publication taken over by Cambridge University Press in 1984 with a new copyright date. | ||
504 | |a Includes bibliographical references (pages 204-213) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Half Title; Series Page; Title; Copyright; ; Contents; Editor's Statement; Foreword; Preface; Introduction; CHAPTER 1 Product Integration of Matrix-Valued Functions; 1.0 Introduction; 1.1 Product Integration; 1.2 Product Integral Analysis of Linear Ordinary Differential Equations; 1.3 Further Properties of Product Integrals; 1.4 Estimates of Size, and the Product Integral as a Time-Ordered Exponential; 1.5 Dependence on a Parameter; 1.6 Improper Product Integration; 1.7 Alternative Definitions of the Product Integral; 1.8 Lebesgue-Integrable Functions; Notes to Chapter 1 | |
505 | 8 | |a CHAPTER 2 Contour Product Integration2.0 Introduction; 2.1 The Definition of Contour Product Integrals; 2.2 The Product Integral of an Analytic Function and the Analogues of Cauchy's Integral Theorem; 2.3 A Cauchy Integral Formula for Product Integrals; 2.4 Generalizations; Notes to Chapter 2; CHAPTER 3 Strong Product Integration; 0. Introduction; 3.1 Direct Extensions of the Results of Chapter 1; 3.2 Generalization; 3.3 The Space; 3.4 Solution of Integral Equations; 3.5 Product Integration of Functions in Ls1(a, b); 3.6 Product Integrals Involving Unbounded Operators; Notes to Chapter 3 | |
505 | 8 | |a CHAPTER 4 Applications4.1 Asymptotics for the Schrödinger Equation; 4.2 Weyl's Limit-Circle Classification; 4.3 The Lie Product Formula; 4.4 The Hille-Yosida Theorem; 4.5 An Example Involving Unbounded Operators with Variable Domain; Notes to Chapter 4; CHAPTER 5 Product Integration of Measures; 5.1. Introduction; 5.2 The Product Integral; 5.3 Integral and Differential Equations; 5.4 Further Properties of Product Integrals; 5.5 Improper Product Integration; 5.6 The Schrödinger Equation; 5.7 The Equation y""+p(dx)y' + q(dx)y = 0; Notes to Chapter 5; CHAPTER 6 Complements | |
505 | 8 | |a Other Work and further Results on Product IntegrationAPPENDIX I; APPENDIX I Matrices; A.I.I Elementary Definitions; A.I.2 Calculus of Cnxn-Valued Functions; A.I.3 The Canonical Form of a Matrix; A.I.4 The Spectrum of a Matrix; A.I.5 Some Additional Results; References; Notes to the References; APPENDIX II; APPENDIX II The Place of Multiplicative Integration in Modern Analysis*; A. II. 2 Fluid Flows in Smooth Manifolds; A. Linear Manifolds; B. Nonlinear Manifolds; C. Steady Flows; A. II. 3 Abstract Formulation of the Theory; A. II. 4 The Evolution Equation in a Pseudolinear Algebra | |
505 | 8 | |a A. II. 5 LinearizationA. II. 6 Discrete-State Markovian Processes with Continuous Time Domain; A. II. 7 The Monodromy and Cousin Problems; A. II. 8 The Matricial Hardy and Nevanlinna Classes; A. II. 9 Holonomy; A. II. 10 Perturbation and Partial Integration; A. II.ll Concluding Remarks; References; Index | |
650 | 0 | |a Differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037890 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 0 | |a Integral equations. |0 http://id.loc.gov/authorities/subjects/sh85067088 | |
650 | 6 | |a Équations différentielles. | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 6 | |a Équations intégrales. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Integral equations |2 fast | |
650 | 7 | |a Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4012249-9 | |
650 | 7 | |a Partielle Integration |2 gnd |0 http://d-nb.info/gnd/4173438-5 | |
700 | 1 | |a Friedman, Charles N. | |
776 | 0 | 8 | |i Print version: |a Dollard, John D. |t Product integration with applications to differential equations. |d Cambridge [Cambridgeshire] ; New York, NY, USA : Cambridge University Press, 1984 |z 0521302307 |w (DLC) 85121387 |w (OCoLC)12262070 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 10. |0 http://id.loc.gov/authorities/names/n42010632 | |
830 | 0 | |a Encyclopedia of mathematics and its applications. |p Section, Analysis. |0 http://id.loc.gov/authorities/names/n84711552 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616936 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25220201 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385451 | ||
938 | |a EBSCOhost |b EBSC |n 616936 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26084543 | ||
938 | |a YBP Library Services |b YANK |n 11078492 | ||
938 | |a YBP Library Services |b YANK |n 11083281 | ||
938 | |a YBP Library Services |b YANK |n 10755491 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn856017735 |
---|---|
_version_ | 1816882241778745344 |
adam_text | |
any_adam_object | |
author | Dollard, John D. |
author2 | Friedman, Charles N. |
author2_role | |
author2_variant | c n f cn cnf |
author_facet | Dollard, John D. Friedman, Charles N. |
author_role | |
author_sort | Dollard, John D. |
author_variant | j d d jd jdd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA371 |
callnumber-raw | QA371 .D64 1984eb |
callnumber-search | QA371 .D64 1984eb |
callnumber-sort | QA 3371 D64 41984EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 500 |
collection | ZDB-4-EBA |
contents | Cover; Half Title; Series Page; Title; Copyright; ; Contents; Editor's Statement; Foreword; Preface; Introduction; CHAPTER 1 Product Integration of Matrix-Valued Functions; 1.0 Introduction; 1.1 Product Integration; 1.2 Product Integral Analysis of Linear Ordinary Differential Equations; 1.3 Further Properties of Product Integrals; 1.4 Estimates of Size, and the Product Integral as a Time-Ordered Exponential; 1.5 Dependence on a Parameter; 1.6 Improper Product Integration; 1.7 Alternative Definitions of the Product Integral; 1.8 Lebesgue-Integrable Functions; Notes to Chapter 1 CHAPTER 2 Contour Product Integration2.0 Introduction; 2.1 The Definition of Contour Product Integrals; 2.2 The Product Integral of an Analytic Function and the Analogues of Cauchy's Integral Theorem; 2.3 A Cauchy Integral Formula for Product Integrals; 2.4 Generalizations; Notes to Chapter 2; CHAPTER 3 Strong Product Integration; 0. Introduction; 3.1 Direct Extensions of the Results of Chapter 1; 3.2 Generalization; 3.3 The Space; 3.4 Solution of Integral Equations; 3.5 Product Integration of Functions in Ls1(a, b); 3.6 Product Integrals Involving Unbounded Operators; Notes to Chapter 3 CHAPTER 4 Applications4.1 Asymptotics for the Schrödinger Equation; 4.2 Weyl's Limit-Circle Classification; 4.3 The Lie Product Formula; 4.4 The Hille-Yosida Theorem; 4.5 An Example Involving Unbounded Operators with Variable Domain; Notes to Chapter 4; CHAPTER 5 Product Integration of Measures; 5.1. Introduction; 5.2 The Product Integral; 5.3 Integral and Differential Equations; 5.4 Further Properties of Product Integrals; 5.5 Improper Product Integration; 5.6 The Schrödinger Equation; 5.7 The Equation y""+p(dx)y' + q(dx)y = 0; Notes to Chapter 5; CHAPTER 6 Complements Other Work and further Results on Product IntegrationAPPENDIX I; APPENDIX I Matrices; A.I.I Elementary Definitions; A.I.2 Calculus of Cnxn-Valued Functions; A.I.3 The Canonical Form of a Matrix; A.I.4 The Spectrum of a Matrix; A.I.5 Some Additional Results; References; Notes to the References; APPENDIX II; APPENDIX II The Place of Multiplicative Integration in Modern Analysis*; A. II. 2 Fluid Flows in Smooth Manifolds; A. Linear Manifolds; B. Nonlinear Manifolds; C. Steady Flows; A. II. 3 Abstract Formulation of the Theory; A. II. 4 The Evolution Equation in a Pseudolinear Algebra A. II. 5 LinearizationA. II. 6 Discrete-State Markovian Processes with Continuous Time Domain; A. II. 7 The Monodromy and Cousin Problems; A. II. 8 The Matricial Hardy and Nevanlinna Classes; A. II. 9 Holonomy; A. II. 10 Perturbation and Partial Integration; A. II.ll Concluding Remarks; References; Index |
ctrlnum | (OCoLC)856017735 |
dewey-full | 515.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3/5 |
dewey-search | 515.3/5 |
dewey-sort | 3515.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06649cam a2200829 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn856017735</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130819r19841979enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">847520372</subfield><subfield code="a">1124363937</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461938170</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1461938171</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107340701</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107340705</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139886109</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113988610X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521302307</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521302302</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780201135091</subfield><subfield code="q">(U.S.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856017735</subfield><subfield code="z">(OCoLC)847520372</subfield><subfield code="z">(OCoLC)1124363937</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA371</subfield><subfield code="b">.D64 1984eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dollard, John D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Product integration with applications to differential equations /</subfield><subfield code="c">John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York, NY, USA :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1984.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 253 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 10. Section, Analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Imprint and ISBN from label on title page verso. Imprint on t.p.: Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, 1979.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Publication taken over by Cambridge University Press in 1984 with a new copyright date.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 204-213) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half Title; Series Page; Title; Copyright; ; Contents; Editor's Statement; Foreword; Preface; Introduction; CHAPTER 1 Product Integration of Matrix-Valued Functions; 1.0 Introduction; 1.1 Product Integration; 1.2 Product Integral Analysis of Linear Ordinary Differential Equations; 1.3 Further Properties of Product Integrals; 1.4 Estimates of Size, and the Product Integral as a Time-Ordered Exponential; 1.5 Dependence on a Parameter; 1.6 Improper Product Integration; 1.7 Alternative Definitions of the Product Integral; 1.8 Lebesgue-Integrable Functions; Notes to Chapter 1</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CHAPTER 2 Contour Product Integration2.0 Introduction; 2.1 The Definition of Contour Product Integrals; 2.2 The Product Integral of an Analytic Function and the Analogues of Cauchy's Integral Theorem; 2.3 A Cauchy Integral Formula for Product Integrals; 2.4 Generalizations; Notes to Chapter 2; CHAPTER 3 Strong Product Integration; 0. Introduction; 3.1 Direct Extensions of the Results of Chapter 1; 3.2 Generalization; 3.3 The Space; 3.4 Solution of Integral Equations; 3.5 Product Integration of Functions in Ls1(a, b); 3.6 Product Integrals Involving Unbounded Operators; Notes to Chapter 3</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CHAPTER 4 Applications4.1 Asymptotics for the Schrödinger Equation; 4.2 Weyl's Limit-Circle Classification; 4.3 The Lie Product Formula; 4.4 The Hille-Yosida Theorem; 4.5 An Example Involving Unbounded Operators with Variable Domain; Notes to Chapter 4; CHAPTER 5 Product Integration of Measures; 5.1. Introduction; 5.2 The Product Integral; 5.3 Integral and Differential Equations; 5.4 Further Properties of Product Integrals; 5.5 Improper Product Integration; 5.6 The Schrödinger Equation; 5.7 The Equation y""+p(dx)y' + q(dx)y = 0; Notes to Chapter 5; CHAPTER 6 Complements</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Other Work and further Results on Product IntegrationAPPENDIX I; APPENDIX I Matrices; A.I.I Elementary Definitions; A.I.2 Calculus of Cnxn-Valued Functions; A.I.3 The Canonical Form of a Matrix; A.I.4 The Spectrum of a Matrix; A.I.5 Some Additional Results; References; Notes to the References; APPENDIX II; APPENDIX II The Place of Multiplicative Integration in Modern Analysis*; A. II. 2 Fluid Flows in Smooth Manifolds; A. Linear Manifolds; B. Nonlinear Manifolds; C. Steady Flows; A. II. 3 Abstract Formulation of the Theory; A. II. 4 The Evolution Equation in a Pseudolinear Algebra</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A. II. 5 LinearizationA. II. 6 Discrete-State Markovian Processes with Continuous Time Domain; A. II. 7 The Monodromy and Cousin Problems; A. II. 8 The Matricial Hardy and Nevanlinna Classes; A. II. 9 Holonomy; A. II. 10 Perturbation and Partial Integration; A. II.ll Concluding Remarks; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037890</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integral equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067088</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations intégrales.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4012249-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Integration</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4173438-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Charles N.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dollard, John D.</subfield><subfield code="t">Product integration with applications to differential equations.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York, NY, USA : Cambridge University Press, 1984</subfield><subfield code="z">0521302307</subfield><subfield code="w">(DLC) 85121387</subfield><subfield code="w">(OCoLC)12262070</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 10.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications.</subfield><subfield code="p">Section, Analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84711552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616936</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25220201</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385451</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">616936</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26084543</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11078492</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11083281</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10755491</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn856017735 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:29Z |
institution | BVB |
isbn | 9781461938170 1461938171 9781107340701 1107340705 9781139886109 113988610X |
language | English |
oclc_num | 856017735 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxii, 253 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1984 |
publishDateSearch | 1979 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; Encyclopedia of mathematics and its applications. Section, Analysis. |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Dollard, John D. Product integration with applications to differential equations / John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani. Cambridge [Cambridgeshire] ; New York, NY, USA : Cambridge University Press, 1984. 1 online resource (xxii, 253 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; v. 10. Section, Analysis Imprint and ISBN from label on title page verso. Imprint on t.p.: Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, 1979. Publication taken over by Cambridge University Press in 1984 with a new copyright date. Includes bibliographical references (pages 204-213) and index. Print version record. Cover; Half Title; Series Page; Title; Copyright; ; Contents; Editor's Statement; Foreword; Preface; Introduction; CHAPTER 1 Product Integration of Matrix-Valued Functions; 1.0 Introduction; 1.1 Product Integration; 1.2 Product Integral Analysis of Linear Ordinary Differential Equations; 1.3 Further Properties of Product Integrals; 1.4 Estimates of Size, and the Product Integral as a Time-Ordered Exponential; 1.5 Dependence on a Parameter; 1.6 Improper Product Integration; 1.7 Alternative Definitions of the Product Integral; 1.8 Lebesgue-Integrable Functions; Notes to Chapter 1 CHAPTER 2 Contour Product Integration2.0 Introduction; 2.1 The Definition of Contour Product Integrals; 2.2 The Product Integral of an Analytic Function and the Analogues of Cauchy's Integral Theorem; 2.3 A Cauchy Integral Formula for Product Integrals; 2.4 Generalizations; Notes to Chapter 2; CHAPTER 3 Strong Product Integration; 0. Introduction; 3.1 Direct Extensions of the Results of Chapter 1; 3.2 Generalization; 3.3 The Space; 3.4 Solution of Integral Equations; 3.5 Product Integration of Functions in Ls1(a, b); 3.6 Product Integrals Involving Unbounded Operators; Notes to Chapter 3 CHAPTER 4 Applications4.1 Asymptotics for the Schrödinger Equation; 4.2 Weyl's Limit-Circle Classification; 4.3 The Lie Product Formula; 4.4 The Hille-Yosida Theorem; 4.5 An Example Involving Unbounded Operators with Variable Domain; Notes to Chapter 4; CHAPTER 5 Product Integration of Measures; 5.1. Introduction; 5.2 The Product Integral; 5.3 Integral and Differential Equations; 5.4 Further Properties of Product Integrals; 5.5 Improper Product Integration; 5.6 The Schrödinger Equation; 5.7 The Equation y""+p(dx)y' + q(dx)y = 0; Notes to Chapter 5; CHAPTER 6 Complements Other Work and further Results on Product IntegrationAPPENDIX I; APPENDIX I Matrices; A.I.I Elementary Definitions; A.I.2 Calculus of Cnxn-Valued Functions; A.I.3 The Canonical Form of a Matrix; A.I.4 The Spectrum of a Matrix; A.I.5 Some Additional Results; References; Notes to the References; APPENDIX II; APPENDIX II The Place of Multiplicative Integration in Modern Analysis*; A. II. 2 Fluid Flows in Smooth Manifolds; A. Linear Manifolds; B. Nonlinear Manifolds; C. Steady Flows; A. II. 3 Abstract Formulation of the Theory; A. II. 4 The Evolution Equation in a Pseudolinear Algebra A. II. 5 LinearizationA. II. 6 Discrete-State Markovian Processes with Continuous Time Domain; A. II. 7 The Monodromy and Cousin Problems; A. II. 8 The Matricial Hardy and Nevanlinna Classes; A. II. 9 Holonomy; A. II. 10 Perturbation and Partial Integration; A. II.ll Concluding Remarks; References; Index Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Integral equations. http://id.loc.gov/authorities/subjects/sh85067088 Équations différentielles. Équations aux dérivées partielles. Équations intégrales. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations fast Differential equations, Partial fast Integral equations fast Differentialgleichung gnd http://d-nb.info/gnd/4012249-9 Partielle Integration gnd http://d-nb.info/gnd/4173438-5 Friedman, Charles N. Print version: Dollard, John D. Product integration with applications to differential equations. Cambridge [Cambridgeshire] ; New York, NY, USA : Cambridge University Press, 1984 0521302307 (DLC) 85121387 (OCoLC)12262070 Encyclopedia of mathematics and its applications ; v. 10. http://id.loc.gov/authorities/names/n42010632 Encyclopedia of mathematics and its applications. Section, Analysis. http://id.loc.gov/authorities/names/n84711552 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616936 Volltext |
spellingShingle | Dollard, John D. Product integration with applications to differential equations / Encyclopedia of mathematics and its applications ; Encyclopedia of mathematics and its applications. Section, Analysis. Cover; Half Title; Series Page; Title; Copyright; ; Contents; Editor's Statement; Foreword; Preface; Introduction; CHAPTER 1 Product Integration of Matrix-Valued Functions; 1.0 Introduction; 1.1 Product Integration; 1.2 Product Integral Analysis of Linear Ordinary Differential Equations; 1.3 Further Properties of Product Integrals; 1.4 Estimates of Size, and the Product Integral as a Time-Ordered Exponential; 1.5 Dependence on a Parameter; 1.6 Improper Product Integration; 1.7 Alternative Definitions of the Product Integral; 1.8 Lebesgue-Integrable Functions; Notes to Chapter 1 CHAPTER 2 Contour Product Integration2.0 Introduction; 2.1 The Definition of Contour Product Integrals; 2.2 The Product Integral of an Analytic Function and the Analogues of Cauchy's Integral Theorem; 2.3 A Cauchy Integral Formula for Product Integrals; 2.4 Generalizations; Notes to Chapter 2; CHAPTER 3 Strong Product Integration; 0. Introduction; 3.1 Direct Extensions of the Results of Chapter 1; 3.2 Generalization; 3.3 The Space; 3.4 Solution of Integral Equations; 3.5 Product Integration of Functions in Ls1(a, b); 3.6 Product Integrals Involving Unbounded Operators; Notes to Chapter 3 CHAPTER 4 Applications4.1 Asymptotics for the Schrödinger Equation; 4.2 Weyl's Limit-Circle Classification; 4.3 The Lie Product Formula; 4.4 The Hille-Yosida Theorem; 4.5 An Example Involving Unbounded Operators with Variable Domain; Notes to Chapter 4; CHAPTER 5 Product Integration of Measures; 5.1. Introduction; 5.2 The Product Integral; 5.3 Integral and Differential Equations; 5.4 Further Properties of Product Integrals; 5.5 Improper Product Integration; 5.6 The Schrödinger Equation; 5.7 The Equation y""+p(dx)y' + q(dx)y = 0; Notes to Chapter 5; CHAPTER 6 Complements Other Work and further Results on Product IntegrationAPPENDIX I; APPENDIX I Matrices; A.I.I Elementary Definitions; A.I.2 Calculus of Cnxn-Valued Functions; A.I.3 The Canonical Form of a Matrix; A.I.4 The Spectrum of a Matrix; A.I.5 Some Additional Results; References; Notes to the References; APPENDIX II; APPENDIX II The Place of Multiplicative Integration in Modern Analysis*; A. II. 2 Fluid Flows in Smooth Manifolds; A. Linear Manifolds; B. Nonlinear Manifolds; C. Steady Flows; A. II. 3 Abstract Formulation of the Theory; A. II. 4 The Evolution Equation in a Pseudolinear Algebra A. II. 5 LinearizationA. II. 6 Discrete-State Markovian Processes with Continuous Time Domain; A. II. 7 The Monodromy and Cousin Problems; A. II. 8 The Matricial Hardy and Nevanlinna Classes; A. II. 9 Holonomy; A. II. 10 Perturbation and Partial Integration; A. II.ll Concluding Remarks; References; Index Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Integral equations. http://id.loc.gov/authorities/subjects/sh85067088 Équations différentielles. Équations aux dérivées partielles. Équations intégrales. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations fast Differential equations, Partial fast Integral equations fast Differentialgleichung gnd http://d-nb.info/gnd/4012249-9 Partielle Integration gnd http://d-nb.info/gnd/4173438-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037890 http://id.loc.gov/authorities/subjects/sh85037912 http://id.loc.gov/authorities/subjects/sh85067088 http://d-nb.info/gnd/4012249-9 http://d-nb.info/gnd/4173438-5 |
title | Product integration with applications to differential equations / |
title_auth | Product integration with applications to differential equations / |
title_exact_search | Product integration with applications to differential equations / |
title_full | Product integration with applications to differential equations / John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani. |
title_fullStr | Product integration with applications to differential equations / John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani. |
title_full_unstemmed | Product integration with applications to differential equations / John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani. |
title_short | Product integration with applications to differential equations / |
title_sort | product integration with applications to differential equations |
topic | Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Integral equations. http://id.loc.gov/authorities/subjects/sh85067088 Équations différentielles. Équations aux dérivées partielles. Équations intégrales. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations fast Differential equations, Partial fast Integral equations fast Differentialgleichung gnd http://d-nb.info/gnd/4012249-9 Partielle Integration gnd http://d-nb.info/gnd/4173438-5 |
topic_facet | Differential equations. Differential equations, Partial. Integral equations. Équations différentielles. Équations aux dérivées partielles. Équations intégrales. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Differential equations Differential equations, Partial Integral equations Differentialgleichung Partielle Integration |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616936 |
work_keys_str_mv | AT dollardjohnd productintegrationwithapplicationstodifferentialequations AT friedmancharlesn productintegrationwithapplicationstodifferentialequations |