Matrices and Graphs in Geometry /:
"Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the pr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2011, ©2011.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
139. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science"--Provided by publisher "This book comprises, in addition to auxiliary material, the research on which I have worked for the past more than 50 years. Some of the results appear here for the first time. The impetus for writing the book came from the late Victor Klee, after my talk in Minneapolis in 1991. The main subject is simplex geometry, a topic which fascinated me from my student times, caused, in fact, by the richness of triangle and tetrahedron geometry on one side and matrix theory on the other side. A large part of the content is concerned with qualitative properties of a simplex. This can be understood as studying not just relations of equalities but also inequalities. It seems that this direction is starting to have important consequences in practical (and important) applications, such as finite element methods"--Provided by publisher |
Beschreibung: | 1 online resource (viii, 197 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 193-194) and index. |
ISBN: | 9781461938279 1461938279 9780511973611 0511973616 9781107387355 1107387353 9781107390232 1107390230 1139886576 9781139886574 1107299179 9781107299177 1107398657 9781107398658 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn856017724 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130819s2011 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d E7B |d UMI |d DEBSZ |d YDXCP |d COO |d EBLCP |d EUX |d OCLCF |d OCLCQ |d COCUF |d STF |d CEF |d MERUC |d ZCU |d ICG |d K6U |d LOA |d VT2 |d U3W |d OCLCQ |d WYU |d LVT |d TKN |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d A6Q |d G3B |d OCLCQ |d AU@ |d UKCRE |d VLY |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d OCLCQ | ||
015 | |a GBB098594 |2 bnb | ||
016 | 7 | |a 015629849 |2 Uk | |
019 | |a 847521080 |a 862411942 |a 862614465 |a 1042948373 |a 1043680072 |a 1066598725 |a 1076628969 |a 1081192071 |a 1097095297 |a 1153553736 |a 1162311654 |a 1170634148 |a 1171981103 |a 1228563153 |a 1241783474 |a 1259245131 |a 1433233230 | ||
020 | |a 9781461938279 |q (electronic bk.) | ||
020 | |a 1461938279 |q (electronic bk.) | ||
020 | |a 9780511973611 |q (electronic bk.) | ||
020 | |a 0511973616 |q (electronic bk.) | ||
020 | |a 9781107387355 |q (e-book) | ||
020 | |a 1107387353 |q (e-book) | ||
020 | |a 9781107390232 | ||
020 | |a 1107390230 | ||
020 | |a 1139886576 | ||
020 | |a 9781139886574 | ||
020 | |a 1107299179 | ||
020 | |a 9781107299177 | ||
020 | |a 1107398657 | ||
020 | |a 9781107398658 | ||
020 | |z 9780521461931 | ||
020 | |z 0521461936 | ||
035 | |a (OCoLC)856017724 |z (OCoLC)847521080 |z (OCoLC)862411942 |z (OCoLC)862614465 |z (OCoLC)1042948373 |z (OCoLC)1043680072 |z (OCoLC)1066598725 |z (OCoLC)1076628969 |z (OCoLC)1081192071 |z (OCoLC)1097095297 |z (OCoLC)1153553736 |z (OCoLC)1162311654 |z (OCoLC)1170634148 |z (OCoLC)1171981103 |z (OCoLC)1228563153 |z (OCoLC)1241783474 |z (OCoLC)1259245131 |z (OCoLC)1433233230 | ||
037 | |a CL0500000331 |b Safari Books Online | ||
050 | 4 | |a QA447 |b .F45 2011eb | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516 |2 22 | |
084 | |a MAT038000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Fiedler, Miroslav. |1 https://id.oclc.org/worldcat/entity/E39PBJwmTwChBCX8kPRTF8rTHC |0 http://id.loc.gov/authorities/names/n82003519 | |
245 | 1 | 0 | |a Matrices and Graphs in Geometry / |c Miroslav Fiedler. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2011, ©2011. | ||
300 | |a 1 online resource (viii, 197 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Encyclopedia of Mathematics and its Applications ; |v 139 | |
520 | |a "Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science"--Provided by publisher | ||
520 | |a "This book comprises, in addition to auxiliary material, the research on which I have worked for the past more than 50 years. Some of the results appear here for the first time. The impetus for writing the book came from the late Victor Klee, after my talk in Minneapolis in 1991. The main subject is simplex geometry, a topic which fascinated me from my student times, caused, in fact, by the richness of triangle and tetrahedron geometry on one side and matrix theory on the other side. A large part of the content is concerned with qualitative properties of a simplex. This can be understood as studying not just relations of equalities but also inequalities. It seems that this direction is starting to have important consequences in practical (and important) applications, such as finite element methods"--Provided by publisher | ||
504 | |a Includes bibliographical references (pages 193-194) and index. | ||
505 | 0 | |a Matricial approach to Euclidean geometry -- Simplex geometry -- Qualitative properties of the angles in a simplex -- Special simplexes -- Further geometric objects -- Applications. | |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Geometry. |0 http://id.loc.gov/authorities/subjects/sh85054133 | |
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 0 | |a Graphic methods. |0 http://id.loc.gov/authorities/subjects/sh85056481 | |
650 | 6 | |a Géométrie. | |
650 | 6 | |a Matrices. | |
650 | 6 | |a Méthodes graphiques. | |
650 | 7 | |a geometry. |2 aat | |
650 | 7 | |a graphs. |2 aat | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Geometry |2 fast | |
650 | 7 | |a Graphic methods |2 fast | |
650 | 7 | |a Matrices |2 fast | |
776 | 0 | 8 | |i Print version: |a Fiedler, Miroslav. |t Matrices and Graphs in Geometry. |d Cambridge, UK ; New York : Cambridge University Press, 2011, ©2011 |z 9780521461931 |w (DLC) 2010046601 |w (OCoLC)689548773 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v 139. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616950 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34202071 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385496 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1543509 | ||
938 | |a ebrary |b EBRY |n ebr10746219 | ||
938 | |a EBSCOhost |b EBSC |n 616950 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26084550 | ||
938 | |a YBP Library Services |b YANK |n 10755479 | ||
938 | |a YBP Library Services |b YANK |n 11083291 | ||
938 | |a YBP Library Services |b YANK |n 11338533 | ||
938 | |a YBP Library Services |b YANK |n 11078502 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn856017724 |
---|---|
_version_ | 1816882241814396928 |
adam_text | |
any_adam_object | |
author | Fiedler, Miroslav |
author_GND | http://id.loc.gov/authorities/names/n82003519 |
author_facet | Fiedler, Miroslav |
author_role | |
author_sort | Fiedler, Miroslav |
author_variant | m f mf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA447 |
callnumber-raw | QA447 .F45 2011eb |
callnumber-search | QA447 .F45 2011eb |
callnumber-sort | QA 3447 F45 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Matricial approach to Euclidean geometry -- Simplex geometry -- Qualitative properties of the angles in a simplex -- Special simplexes -- Further geometric objects -- Applications. |
ctrlnum | (OCoLC)856017724 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06312cam a2200925 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn856017724</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130819s2011 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">UMI</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">EUX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">CEF</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">LOA</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB098594</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015629849</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">847521080</subfield><subfield code="a">862411942</subfield><subfield code="a">862614465</subfield><subfield code="a">1042948373</subfield><subfield code="a">1043680072</subfield><subfield code="a">1066598725</subfield><subfield code="a">1076628969</subfield><subfield code="a">1081192071</subfield><subfield code="a">1097095297</subfield><subfield code="a">1153553736</subfield><subfield code="a">1162311654</subfield><subfield code="a">1170634148</subfield><subfield code="a">1171981103</subfield><subfield code="a">1228563153</subfield><subfield code="a">1241783474</subfield><subfield code="a">1259245131</subfield><subfield code="a">1433233230</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461938279</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1461938279</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511973611</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511973616</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107387355</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107387353</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107390232</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107390230</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139886576</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139886574</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107299179</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107299177</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107398657</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107398658</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521461931</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521461936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856017724</subfield><subfield code="z">(OCoLC)847521080</subfield><subfield code="z">(OCoLC)862411942</subfield><subfield code="z">(OCoLC)862614465</subfield><subfield code="z">(OCoLC)1042948373</subfield><subfield code="z">(OCoLC)1043680072</subfield><subfield code="z">(OCoLC)1066598725</subfield><subfield code="z">(OCoLC)1076628969</subfield><subfield code="z">(OCoLC)1081192071</subfield><subfield code="z">(OCoLC)1097095297</subfield><subfield code="z">(OCoLC)1153553736</subfield><subfield code="z">(OCoLC)1162311654</subfield><subfield code="z">(OCoLC)1170634148</subfield><subfield code="z">(OCoLC)1171981103</subfield><subfield code="z">(OCoLC)1228563153</subfield><subfield code="z">(OCoLC)1241783474</subfield><subfield code="z">(OCoLC)1259245131</subfield><subfield code="z">(OCoLC)1433233230</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000331</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA447</subfield><subfield code="b">.F45 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fiedler, Miroslav.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwmTwChBCX8kPRTF8rTHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82003519</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrices and Graphs in Geometry /</subfield><subfield code="c">Miroslav Fiedler.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2011, ©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 197 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of Mathematics and its Applications ;</subfield><subfield code="v">139</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science"--Provided by publisher</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book comprises, in addition to auxiliary material, the research on which I have worked for the past more than 50 years. Some of the results appear here for the first time. The impetus for writing the book came from the late Victor Klee, after my talk in Minneapolis in 1991. The main subject is simplex geometry, a topic which fascinated me from my student times, caused, in fact, by the richness of triangle and tetrahedron geometry on one side and matrix theory on the other side. A large part of the content is concerned with qualitative properties of a simplex. This can be understood as studying not just relations of equalities but also inequalities. It seems that this direction is starting to have important consequences in practical (and important) applications, such as finite element methods"--Provided by publisher</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 193-194) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Matricial approach to Euclidean geometry -- Simplex geometry -- Qualitative properties of the angles in a simplex -- Special simplexes -- Further geometric objects -- Applications.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054133</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graphic methods.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056481</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Méthodes graphiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">geometry.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">graphs.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphic methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fiedler, Miroslav.</subfield><subfield code="t">Matrices and Graphs in Geometry.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2011, ©2011</subfield><subfield code="z">9780521461931</subfield><subfield code="w">(DLC) 2010046601</subfield><subfield code="w">(OCoLC)689548773</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">139.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616950</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34202071</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385496</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1543509</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10746219</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">616950</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26084550</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10755479</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11083291</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11338533</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11078502</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn856017724 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:29Z |
institution | BVB |
isbn | 9781461938279 1461938279 9780511973611 0511973616 9781107387355 1107387353 9781107390232 1107390230 1139886576 9781139886574 1107299179 9781107299177 1107398657 9781107398658 |
language | English |
oclc_num | 856017724 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 197 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of Mathematics and its Applications ; |
spelling | Fiedler, Miroslav. https://id.oclc.org/worldcat/entity/E39PBJwmTwChBCX8kPRTF8rTHC http://id.loc.gov/authorities/names/n82003519 Matrices and Graphs in Geometry / Miroslav Fiedler. Cambridge, UK ; New York : Cambridge University Press, 2011, ©2011. 1 online resource (viii, 197 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Encyclopedia of Mathematics and its Applications ; 139 "Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science"--Provided by publisher "This book comprises, in addition to auxiliary material, the research on which I have worked for the past more than 50 years. Some of the results appear here for the first time. The impetus for writing the book came from the late Victor Klee, after my talk in Minneapolis in 1991. The main subject is simplex geometry, a topic which fascinated me from my student times, caused, in fact, by the richness of triangle and tetrahedron geometry on one side and matrix theory on the other side. A large part of the content is concerned with qualitative properties of a simplex. This can be understood as studying not just relations of equalities but also inequalities. It seems that this direction is starting to have important consequences in practical (and important) applications, such as finite element methods"--Provided by publisher Includes bibliographical references (pages 193-194) and index. Matricial approach to Euclidean geometry -- Simplex geometry -- Qualitative properties of the angles in a simplex -- Special simplexes -- Further geometric objects -- Applications. Print version record. English. Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Graphic methods. http://id.loc.gov/authorities/subjects/sh85056481 Géométrie. Matrices. Méthodes graphiques. geometry. aat graphs. aat MATHEMATICS Topology. bisacsh MATHEMATICS Geometry General. bisacsh Geometry fast Graphic methods fast Matrices fast Print version: Fiedler, Miroslav. Matrices and Graphs in Geometry. Cambridge, UK ; New York : Cambridge University Press, 2011, ©2011 9780521461931 (DLC) 2010046601 (OCoLC)689548773 Encyclopedia of mathematics and its applications ; 139. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616950 Volltext |
spellingShingle | Fiedler, Miroslav Matrices and Graphs in Geometry / Encyclopedia of mathematics and its applications ; Matricial approach to Euclidean geometry -- Simplex geometry -- Qualitative properties of the angles in a simplex -- Special simplexes -- Further geometric objects -- Applications. Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Graphic methods. http://id.loc.gov/authorities/subjects/sh85056481 Géométrie. Matrices. Méthodes graphiques. geometry. aat graphs. aat MATHEMATICS Topology. bisacsh MATHEMATICS Geometry General. bisacsh Geometry fast Graphic methods fast Matrices fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054133 http://id.loc.gov/authorities/subjects/sh85082210 http://id.loc.gov/authorities/subjects/sh85056481 |
title | Matrices and Graphs in Geometry / |
title_auth | Matrices and Graphs in Geometry / |
title_exact_search | Matrices and Graphs in Geometry / |
title_full | Matrices and Graphs in Geometry / Miroslav Fiedler. |
title_fullStr | Matrices and Graphs in Geometry / Miroslav Fiedler. |
title_full_unstemmed | Matrices and Graphs in Geometry / Miroslav Fiedler. |
title_short | Matrices and Graphs in Geometry / |
title_sort | matrices and graphs in geometry |
topic | Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Graphic methods. http://id.loc.gov/authorities/subjects/sh85056481 Géométrie. Matrices. Méthodes graphiques. geometry. aat graphs. aat MATHEMATICS Topology. bisacsh MATHEMATICS Geometry General. bisacsh Geometry fast Graphic methods fast Matrices fast |
topic_facet | Geometry. Matrices. Graphic methods. Géométrie. Méthodes graphiques. geometry. graphs. MATHEMATICS Topology. MATHEMATICS Geometry General. Geometry Graphic methods Matrices |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=616950 |
work_keys_str_mv | AT fiedlermiroslav matricesandgraphsingeometry |