Control theory for partial differential equations :: continuous and approximation theories. 2, Abstract hyperbolic-like systems over a finite time horizon /
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2000.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 75. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xxi, pages 645-1067, [5] pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781107089013 1107089018 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn854919480 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130802s2000 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d OCLCQ |d AGLDB |d COO |d STF |d OCLCQ |d VTS |d REC |d M8D |d OCLCO |d AJS |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 978633643 |a 978971606 |a 1048313353 |a 1065122126 |a 1119106068 |a 1157918361 |a 1158990465 |a 1161638935 |a 1178721509 |a 1184508832 |a 1190684905 | ||
020 | |a 9781107089013 |q (electronic bk.) | ||
020 | |a 1107089018 |q (electronic bk.) | ||
020 | |z 0521584019 | ||
020 | |z 9780521584012 | ||
035 | |a (OCoLC)854919480 |z (OCoLC)978633643 |z (OCoLC)978971606 |z (OCoLC)1048313353 |z (OCoLC)1065122126 |z (OCoLC)1119106068 |z (OCoLC)1157918361 |z (OCoLC)1158990465 |z (OCoLC)1161638935 |z (OCoLC)1178721509 |z (OCoLC)1184508832 |z (OCoLC)1190684905 | ||
050 | 4 | |a QA377 | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515.353 |2 22 | |
084 | |a SK 560 |2 rvk | ||
084 | |a MAT 357f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Lasiecka, I. |q (Irena), |d 1948- | |
245 | 1 | 0 | |a Control theory for partial differential equations : |b continuous and approximation theories. |n 2, |p Abstract hyperbolic-like systems over a finite time horizon / |c Irena Lasiecka, Roberto Triggiani. |
246 | 3 | 0 | |a Abstract hyperbolic-like systems over a finite time horizon |
260 | |a Cambridge : |b Cambridge University Press, |c 2000. | ||
300 | |a 1 online resource (xxi, pages 645-1067, [5] pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v v. 75 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a ""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof"" | |
505 | 8 | |a 7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography | |
505 | 8 | |a ""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3"" | |
505 | 8 | |a ""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming"" | |
505 | 8 | |a 8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 0 | |a Control theory. |0 http://id.loc.gov/authorities/subjects/sh85031658 | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 6 | |a Théorie de la commande. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Hyperbolische Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4131213-2 | |
700 | 1 | |a Triggiani, R. |q (Roberto), |d 1942- | |
776 | 0 | 8 | |i Print version: |a Lasiecka, I. (Irena), 1948- |t Control theory for partial differential equations : 2, Abstract hyperbolic-like systems over a finite time horizon. |d Cambridge : Cambridge University Press, 2000 |z 0521584019 |w (DLC) 99011617 |w (OCoLC)316647885 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 75. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569393 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 569393 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn854919480 |
---|---|
_version_ | 1816882240095780864 |
adam_text | |
any_adam_object | |
author | Lasiecka, I. (Irena), 1948- |
author2 | Triggiani, R. (Roberto), 1942- |
author2_role | |
author2_variant | r t rt |
author_facet | Lasiecka, I. (Irena), 1948- Triggiani, R. (Roberto), 1942- |
author_role | |
author_sort | Lasiecka, I. 1948- |
author_variant | i l il |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 |
callnumber-search | QA377 |
callnumber-sort | QA 3377 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 560 |
classification_tum | MAT 357f |
collection | ZDB-4-EBA |
contents | ""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof"" 7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography ""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3"" ""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming"" 8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma |
ctrlnum | (OCoLC)854919480 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05802cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn854919480</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130802s2000 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">978633643</subfield><subfield code="a">978971606</subfield><subfield code="a">1048313353</subfield><subfield code="a">1065122126</subfield><subfield code="a">1119106068</subfield><subfield code="a">1157918361</subfield><subfield code="a">1158990465</subfield><subfield code="a">1161638935</subfield><subfield code="a">1178721509</subfield><subfield code="a">1184508832</subfield><subfield code="a">1190684905</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089013</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089018</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521584019</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521584012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)854919480</subfield><subfield code="z">(OCoLC)978633643</subfield><subfield code="z">(OCoLC)978971606</subfield><subfield code="z">(OCoLC)1048313353</subfield><subfield code="z">(OCoLC)1065122126</subfield><subfield code="z">(OCoLC)1119106068</subfield><subfield code="z">(OCoLC)1157918361</subfield><subfield code="z">(OCoLC)1158990465</subfield><subfield code="z">(OCoLC)1161638935</subfield><subfield code="z">(OCoLC)1178721509</subfield><subfield code="z">(OCoLC)1184508832</subfield><subfield code="z">(OCoLC)1190684905</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lasiecka, I.</subfield><subfield code="q">(Irena),</subfield><subfield code="d">1948-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Control theory for partial differential equations :</subfield><subfield code="b">continuous and approximation theories.</subfield><subfield code="n">2,</subfield><subfield code="p">Abstract hyperbolic-like systems over a finite time horizon /</subfield><subfield code="c">Irena Lasiecka, Roberto Triggiani.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Abstract hyperbolic-like systems over a finite time horizon</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, pages 645-1067, [5] pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 75</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Control theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031658</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la commande.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4131213-2</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triggiani, R.</subfield><subfield code="q">(Roberto),</subfield><subfield code="d">1942-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lasiecka, I. (Irena), 1948-</subfield><subfield code="t">Control theory for partial differential equations : 2, Abstract hyperbolic-like systems over a finite time horizon.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2000</subfield><subfield code="z">0521584019</subfield><subfield code="w">(DLC) 99011617</subfield><subfield code="w">(OCoLC)316647885</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 75.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569393</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569393</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn854919480 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:28Z |
institution | BVB |
isbn | 9781107089013 1107089018 |
language | English |
oclc_num | 854919480 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxi, pages 645-1067, [5] pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Lasiecka, I. (Irena), 1948- Control theory for partial differential equations : continuous and approximation theories. 2, Abstract hyperbolic-like systems over a finite time horizon / Irena Lasiecka, Roberto Triggiani. Abstract hyperbolic-like systems over a finite time horizon Cambridge : Cambridge University Press, 2000. 1 online resource (xxi, pages 645-1067, [5] pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; v. 75 Includes bibliographical references and index. Print version record. ""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof"" 7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography ""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3"" ""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming"" 8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast Hyperbolische Differentialgleichung gnd http://d-nb.info/gnd/4131213-2 Triggiani, R. (Roberto), 1942- Print version: Lasiecka, I. (Irena), 1948- Control theory for partial differential equations : 2, Abstract hyperbolic-like systems over a finite time horizon. Cambridge : Cambridge University Press, 2000 0521584019 (DLC) 99011617 (OCoLC)316647885 Encyclopedia of mathematics and its applications ; v. 75. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569393 Volltext |
spellingShingle | Lasiecka, I. (Irena), 1948- Control theory for partial differential equations : continuous and approximation theories. Encyclopedia of mathematics and its applications ; ""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof"" 7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography ""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3"" ""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming"" 8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast Hyperbolische Differentialgleichung gnd http://d-nb.info/gnd/4131213-2 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037912 http://id.loc.gov/authorities/subjects/sh85031658 http://d-nb.info/gnd/4131213-2 |
title | Control theory for partial differential equations : continuous and approximation theories. |
title_alt | Abstract hyperbolic-like systems over a finite time horizon |
title_auth | Control theory for partial differential equations : continuous and approximation theories. |
title_exact_search | Control theory for partial differential equations : continuous and approximation theories. |
title_full | Control theory for partial differential equations : continuous and approximation theories. 2, Abstract hyperbolic-like systems over a finite time horizon / Irena Lasiecka, Roberto Triggiani. |
title_fullStr | Control theory for partial differential equations : continuous and approximation theories. 2, Abstract hyperbolic-like systems over a finite time horizon / Irena Lasiecka, Roberto Triggiani. |
title_full_unstemmed | Control theory for partial differential equations : continuous and approximation theories. 2, Abstract hyperbolic-like systems over a finite time horizon / Irena Lasiecka, Roberto Triggiani. |
title_short | Control theory for partial differential equations : |
title_sort | control theory for partial differential equations continuous and approximation theories abstract hyperbolic like systems over a finite time horizon |
title_sub | continuous and approximation theories. |
topic | Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast Hyperbolische Differentialgleichung gnd http://d-nb.info/gnd/4131213-2 |
topic_facet | Differential equations, Partial. Control theory. Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. Control theory Differential equations, Partial Hyperbolische Differentialgleichung |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569393 |
work_keys_str_mv | AT lasieckai controltheoryforpartialdifferentialequationscontinuousandapproximationtheories2 AT triggianir controltheoryforpartialdifferentialequationscontinuousandapproximationtheories2 AT lasieckai abstracthyperboliclikesystemsoverafinitetimehorizon AT triggianir abstracthyperboliclikesystemsoverafinitetimehorizon |