Control theory for partial differential equations :: continuous and approximation theories. 1, Abstract parabolic systems /
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2000.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 74. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781107266780 1107266785 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn853752970 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130725s2000 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d OCLCQ |d AGLDB |d COO |d STF |d OCLCQ |d VTS |d M8D |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL | ||
020 | |a 9781107266780 |q (electronic bk.) | ||
020 | |a 1107266785 |q (electronic bk.) | ||
020 | |z 0521434084 | ||
020 | |z 9780521434089 | ||
020 | |z 0521584019 | ||
020 | |z 9780521584012 | ||
035 | |a (OCoLC)853752970 | ||
050 | 4 | |a QA377 |b .L37 2000eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515/.353 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Lasiecka, I. |q (Irena), |d 1948- |1 https://id.oclc.org/worldcat/entity/E39PBJrGtXb3pjgm448qPqfXh3 |0 http://id.loc.gov/authorities/names/n87875423 | |
245 | 1 | 0 | |a Control theory for partial differential equations : |b continuous and approximation theories. |n 1, |p Abstract parabolic systems / |c Irena Lasiecka, Roberto Triggiani. |
246 | 3 | 0 | |a Abstract parabolic systems |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2000. | ||
300 | |a 1 online resource : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v 74 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]�""; ""0.2.2 Cases Where [D(A),Y]� =D((�A)�)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'"" | |
505 | 8 | |a ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation"" | |
505 | 8 | |a ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y"" | |
505 | 8 | |a ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1"" | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 0 | |a Control theory. |0 http://id.loc.gov/authorities/subjects/sh85031658 | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 6 | |a Théorie de la commande. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
700 | 1 | |a Triggiani, R. |q (Roberto), |d 1942- |1 https://id.oclc.org/worldcat/entity/E39PCjGgD4RDR6BDJBYYHmFf9C |0 http://id.loc.gov/authorities/names/n87875424 | |
758 | |i has work: |a Control theory for partial differential equations 1 Abstract parabolic systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGM6vqV897rXYbwX8x3cGd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lasiecka, I. (Irena), 1948- |t Control theory for partial differential equations. |d Cambridge ; New York : Cambridge University Press, 2000 |z 0521434084 |w (DLC) 99011617 |w (OCoLC)40682527 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 74. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 589305 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn853752970 |
---|---|
_version_ | 1816882239246434304 |
adam_text | |
any_adam_object | |
author | Lasiecka, I. (Irena), 1948- |
author2 | Triggiani, R. (Roberto), 1942- |
author2_role | |
author2_variant | r t rt |
author_GND | http://id.loc.gov/authorities/names/n87875423 http://id.loc.gov/authorities/names/n87875424 |
author_facet | Lasiecka, I. (Irena), 1948- Triggiani, R. (Roberto), 1942- |
author_role | |
author_sort | Lasiecka, I. 1948- |
author_variant | i l il |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .L37 2000eb |
callnumber-search | QA377 .L37 2000eb |
callnumber-sort | QA 3377 L37 42000EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]Â?""; ""0.2.2 Cases Where [D(A),Y]Â? =D((â€?A)Â?)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'"" ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation"" ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y"" ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1"" |
ctrlnum | (OCoLC)853752970 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05148cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn853752970</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130725s2000 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107266780</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107266785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521434084</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521434089</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521584019</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521584012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)853752970</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.L37 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lasiecka, I.</subfield><subfield code="q">(Irena),</subfield><subfield code="d">1948-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrGtXb3pjgm448qPqfXh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87875423</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Control theory for partial differential equations :</subfield><subfield code="b">continuous and approximation theories.</subfield><subfield code="n">1,</subfield><subfield code="p">Abstract parabolic systems /</subfield><subfield code="c">Irena Lasiecka, Roberto Triggiani.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Abstract parabolic systems</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">74</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]Â?""; ""0.2.2 Cases Where [D(A),Y]Â? =D((â€?A)Â?)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1""</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Control theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031658</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la commande.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triggiani, R.</subfield><subfield code="q">(Roberto),</subfield><subfield code="d">1942-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGgD4RDR6BDJBYYHmFf9C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87875424</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Control theory for partial differential equations 1 Abstract parabolic systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGM6vqV897rXYbwX8x3cGd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lasiecka, I. (Irena), 1948-</subfield><subfield code="t">Control theory for partial differential equations.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2000</subfield><subfield code="z">0521434084</subfield><subfield code="w">(DLC) 99011617</subfield><subfield code="w">(OCoLC)40682527</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 74.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">589305</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn853752970 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:27Z |
institution | BVB |
isbn | 9781107266780 1107266785 |
language | English |
oclc_num | 853752970 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Lasiecka, I. (Irena), 1948- https://id.oclc.org/worldcat/entity/E39PBJrGtXb3pjgm448qPqfXh3 http://id.loc.gov/authorities/names/n87875423 Control theory for partial differential equations : continuous and approximation theories. 1, Abstract parabolic systems / Irena Lasiecka, Roberto Triggiani. Abstract parabolic systems Cambridge ; New York : Cambridge University Press, 2000. 1 online resource : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; 74 Includes bibliographical references and index. Print version record. ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]Â?""; ""0.2.2 Cases Where [D(A),Y]Â? =D((â€?A)Â?)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'"" ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation"" ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y"" ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1"" Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast Triggiani, R. (Roberto), 1942- https://id.oclc.org/worldcat/entity/E39PCjGgD4RDR6BDJBYYHmFf9C http://id.loc.gov/authorities/names/n87875424 has work: Control theory for partial differential equations 1 Abstract parabolic systems (Text) https://id.oclc.org/worldcat/entity/E39PCGM6vqV897rXYbwX8x3cGd https://id.oclc.org/worldcat/ontology/hasWork Print version: Lasiecka, I. (Irena), 1948- Control theory for partial differential equations. Cambridge ; New York : Cambridge University Press, 2000 0521434084 (DLC) 99011617 (OCoLC)40682527 Encyclopedia of mathematics and its applications ; v. 74. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305 Volltext |
spellingShingle | Lasiecka, I. (Irena), 1948- Control theory for partial differential equations : continuous and approximation theories. Encyclopedia of mathematics and its applications ; ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]Â?""; ""0.2.2 Cases Where [D(A),Y]Â? =D((â€?A)Â?)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'"" ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation"" ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y"" ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1"" Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037912 http://id.loc.gov/authorities/subjects/sh85031658 |
title | Control theory for partial differential equations : continuous and approximation theories. |
title_alt | Abstract parabolic systems |
title_auth | Control theory for partial differential equations : continuous and approximation theories. |
title_exact_search | Control theory for partial differential equations : continuous and approximation theories. |
title_full | Control theory for partial differential equations : continuous and approximation theories. 1, Abstract parabolic systems / Irena Lasiecka, Roberto Triggiani. |
title_fullStr | Control theory for partial differential equations : continuous and approximation theories. 1, Abstract parabolic systems / Irena Lasiecka, Roberto Triggiani. |
title_full_unstemmed | Control theory for partial differential equations : continuous and approximation theories. 1, Abstract parabolic systems / Irena Lasiecka, Roberto Triggiani. |
title_short | Control theory for partial differential equations : |
title_sort | control theory for partial differential equations continuous and approximation theories abstract parabolic systems |
title_sub | continuous and approximation theories. |
topic | Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. bisacsh Control theory fast Differential equations, Partial fast |
topic_facet | Differential equations, Partial. Control theory. Équations aux dérivées partielles. Théorie de la commande. MATHEMATICS Differential Equations Partial. Control theory Differential equations, Partial |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305 |
work_keys_str_mv | AT lasieckai controltheoryforpartialdifferentialequationscontinuousandapproximationtheories1 AT triggianir controltheoryforpartialdifferentialequationscontinuousandapproximationtheories1 AT lasieckai abstractparabolicsystems AT triggianir abstractparabolicsystems |