Church's Thesis after 70 years /:
Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of a effectively computable function defined in natural numbers with the notion of a recursive function. Despite of the many efforts of prominent scientists, C...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Frankfurt ; New Brunswick, NJ :
Ontos,
©2006.
|
Schriftenreihe: | Ontos mathematical logic ;
v. 1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of a effectively computable function defined in natural numbers with the notion of a recursive function. Despite of the many efforts of prominent scientists, Church's Thesis has never been falsified. There exists a vast literature concerning the thesis. The aim of the book is to provide one volume summary of the state of research on Church's Thesis. These include the following: different formulations of CT, CT and intuitionism, CT and intensional mathematics. |
Beschreibung: | Title from PDF title page (viewed on July 25, 2013). |
Beschreibung: | 1 online resource (551 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110325461 3110325462 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn853664918 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130725s2006 gw a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d EBLCP |d IDEBK |d DEBBG |d DEBSZ |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d VTS |d STF |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL | ||
019 | |a 851970862 |a 905551433 | ||
020 | |a 9783110325461 |q (electronic bk.) | ||
020 | |a 3110325462 |q (electronic bk.) | ||
035 | |a (OCoLC)853664918 |z (OCoLC)851970862 |z (OCoLC)905551433 | ||
050 | 4 | |a QA9 |b .C58 2006 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Church's Thesis after 70 years / |c Adam Olszewski, Jan Woleński, Robert Janusz (eds.). |
246 | 3 | 0 | |a Church's Thesis after seventy years |
260 | |a Frankfurt ; |a New Brunswick, NJ : |b Ontos, |c ©2006. | ||
300 | |a 1 online resource (551 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Ontos mathematical logic ; |v v. 1 | |
500 | |a Title from PDF title page (viewed on July 25, 2013). | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface; Darren AbramsonÞChurch's Thesis and Philosophy of Mind; Andreas Blass, Yuri GurevichÞAlgorithms: A Quest for Absolute Definitions; Douglas S. BridgesÞChurch's Thesis and Bishop's Constructivism; Selmer Bringsjord, Konstantine ArkoudasÞOn the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis; Carol E. ClelandÞThe Church-Turing Thesis. A Last Vestige of a Failed Mathematical Program; B. Jack CopelandÞTuring's Thesis; Hartmut FitzÞChurch's Thesis and Physical Computation; Janet FolinaÞChurch's Thesis and the Variety of Mathematical Justifications. | |
505 | 8 | |a Andrew HodgesÞDid Church and Turing Have a Thesis about Machines?Leon HorstenÞFormalizing Church's Thesis; Stanisław KrajewskiÞRemarks on Church's Thesis and Gödel's Theorem; Charles McCartyÞThesis and Variations; Elliott MendelsonÞOn the Impossibility of Proving the "Hard-Half" of Church's Thesis; Roman Murawski, Jan WolenskiÞThe Status of Church's Thesis; Jerzy MyckaÞAnalog Computation and Church's Thesis; Piergiorgio OdifreddiÞKreisel's Church; Adam OlszewskiÞChurch's Thesis as Formulated by Church -- An Interpretation; Oron ShagrirÞGödel on Turing on Computability. | |
505 | 8 | |a Stewart ShapiroÞComputability, Proof, and Open-TextureWilfried SiegÞStep by Recursive Step: Church's Analysis of Effective Calculability; Karl SvozilÞPhysics and Metaphysics Look at Computation; David TurnerÞChurch's Thesis and Functional Programming; Index. | |
520 | |a Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of a effectively computable function defined in natural numbers with the notion of a recursive function. Despite of the many efforts of prominent scientists, Church's Thesis has never been falsified. There exists a vast literature concerning the thesis. The aim of the book is to provide one volume summary of the state of research on Church's Thesis. These include the following: different formulations of CT, CT and intuitionism, CT and intensional mathematics. | ||
600 | 1 | 0 | |a Church, Alonzo, |d 1903-1995. |0 http://id.loc.gov/authorities/names/n83152979 |
600 | 1 | 7 | |a Church, Alonzo, |d 1903-1995 |2 fast |1 https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq |
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 1 | 7 | |a Stelling van Church. |2 gtt |
700 | 1 | |a Church, Alonzo, |d 1903-1995. |1 https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq |0 http://id.loc.gov/authorities/names/n83152979 | |
700 | 1 | |a Olszewski, Adam. |0 http://id.loc.gov/authorities/names/no99000101 | |
700 | 1 | |a Woleński, Jan. |0 http://id.loc.gov/authorities/names/n86059304 | |
700 | 1 | |a Janusz, Robert. |0 http://id.loc.gov/authorities/names/n2006055039 | |
758 | |i has work: |a Church's Thesis after 70 years (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGQMVj9GR3DkRTYP4387pd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Wolenski, Jan. |t Church's Thesis After 70 Years. |d Berlin : De Gruyter, ©2006 |z 9783110324945 |
830 | 0 | |a Ontos mathematical logic ; |v v. 1. |0 http://id.loc.gov/authorities/names/no2006121879 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=603590 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL1195555 | ||
938 | |a ebrary |b EBRY |n ebr10728709 | ||
938 | |a EBSCOhost |b EBSC |n 603590 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25806440 | ||
938 | |a YBP Library Services |b YANK |n 10818724 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn853664918 |
---|---|
_version_ | 1816882239169888256 |
adam_text | |
any_adam_object | |
author2 | Church, Alonzo, 1903-1995 Olszewski, Adam Woleński, Jan Janusz, Robert |
author2_role | |
author2_variant | a c ac a o ao j w jw r j rj |
author_GND | http://id.loc.gov/authorities/names/n83152979 http://id.loc.gov/authorities/names/no99000101 http://id.loc.gov/authorities/names/n86059304 http://id.loc.gov/authorities/names/n2006055039 |
author_facet | Church, Alonzo, 1903-1995 Olszewski, Adam Woleński, Jan Janusz, Robert |
author_sort | Church, Alonzo, 1903-1995 |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 .C58 2006 |
callnumber-search | QA9 .C58 2006 |
callnumber-sort | QA 19 C58 42006 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Darren AbramsonÞChurch's Thesis and Philosophy of Mind; Andreas Blass, Yuri GurevichÞAlgorithms: A Quest for Absolute Definitions; Douglas S. BridgesÞChurch's Thesis and Bishop's Constructivism; Selmer Bringsjord, Konstantine ArkoudasÞOn the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis; Carol E. ClelandÞThe Church-Turing Thesis. A Last Vestige of a Failed Mathematical Program; B. Jack CopelandÞTuring's Thesis; Hartmut FitzÞChurch's Thesis and Physical Computation; Janet FolinaÞChurch's Thesis and the Variety of Mathematical Justifications. Andrew HodgesÞDid Church and Turing Have a Thesis about Machines?Leon HorstenÞFormalizing Church's Thesis; Stanisław KrajewskiÞRemarks on Church's Thesis and Gödel's Theorem; Charles McCartyÞThesis and Variations; Elliott MendelsonÞOn the Impossibility of Proving the "Hard-Half" of Church's Thesis; Roman Murawski, Jan WolenskiÞThe Status of Church's Thesis; Jerzy MyckaÞAnalog Computation and Church's Thesis; Piergiorgio OdifreddiÞKreisel's Church; Adam OlszewskiÞChurch's Thesis as Formulated by Church -- An Interpretation; Oron ShagrirÞGödel on Turing on Computability. Stewart ShapiroÞComputability, Proof, and Open-TextureWilfried SiegÞStep by Recursive Step: Church's Analysis of Effective Calculability; Karl SvozilÞPhysics and Metaphysics Look at Computation; David TurnerÞChurch's Thesis and Functional Programming; Index. |
ctrlnum | (OCoLC)853664918 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05188cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn853664918</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130725s2006 gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">851970862</subfield><subfield code="a">905551433</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110325461</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110325462</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)853664918</subfield><subfield code="z">(OCoLC)851970862</subfield><subfield code="z">(OCoLC)905551433</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9</subfield><subfield code="b">.C58 2006</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Church's Thesis after 70 years /</subfield><subfield code="c">Adam Olszewski, Jan Woleński, Robert Janusz (eds.).</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Church's Thesis after seventy years</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Frankfurt ;</subfield><subfield code="a">New Brunswick, NJ :</subfield><subfield code="b">Ontos,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (551 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ontos mathematical logic ;</subfield><subfield code="v">v. 1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on July 25, 2013).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Darren AbramsonÞChurch's Thesis and Philosophy of Mind; Andreas Blass, Yuri GurevichÞAlgorithms: A Quest for Absolute Definitions; Douglas S. BridgesÞChurch's Thesis and Bishop's Constructivism; Selmer Bringsjord, Konstantine ArkoudasÞOn the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis; Carol E. ClelandÞThe Church-Turing Thesis. A Last Vestige of a Failed Mathematical Program; B. Jack CopelandÞTuring's Thesis; Hartmut FitzÞChurch's Thesis and Physical Computation; Janet FolinaÞChurch's Thesis and the Variety of Mathematical Justifications.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Andrew HodgesÞDid Church and Turing Have a Thesis about Machines?Leon HorstenÞFormalizing Church's Thesis; Stanisław KrajewskiÞRemarks on Church's Thesis and Gödel's Theorem; Charles McCartyÞThesis and Variations; Elliott MendelsonÞOn the Impossibility of Proving the "Hard-Half" of Church's Thesis; Roman Murawski, Jan WolenskiÞThe Status of Church's Thesis; Jerzy MyckaÞAnalog Computation and Church's Thesis; Piergiorgio OdifreddiÞKreisel's Church; Adam OlszewskiÞChurch's Thesis as Formulated by Church -- An Interpretation; Oron ShagrirÞGödel on Turing on Computability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Stewart ShapiroÞComputability, Proof, and Open-TextureWilfried SiegÞStep by Recursive Step: Church's Analysis of Effective Calculability; Karl SvozilÞPhysics and Metaphysics Look at Computation; David TurnerÞChurch's Thesis and Functional Programming; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of a effectively computable function defined in natural numbers with the notion of a recursive function. Despite of the many efforts of prominent scientists, Church's Thesis has never been falsified. There exists a vast literature concerning the thesis. The aim of the book is to provide one volume summary of the state of research on Church's Thesis. These include the following: different formulations of CT, CT and intuitionism, CT and intensional mathematics.</subfield></datafield><datafield tag="600" ind1="1" ind2="0"><subfield code="a">Church, Alonzo,</subfield><subfield code="d">1903-1995.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83152979</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Church, Alonzo,</subfield><subfield code="d">1903-1995</subfield><subfield code="2">fast</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Stelling van Church.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Church, Alonzo,</subfield><subfield code="d">1903-1995.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83152979</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olszewski, Adam.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99000101</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woleński, Jan.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86059304</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janusz, Robert.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006055039</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Church's Thesis after 70 years (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGQMVj9GR3DkRTYP4387pd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Wolenski, Jan.</subfield><subfield code="t">Church's Thesis After 70 Years.</subfield><subfield code="d">Berlin : De Gruyter, ©2006</subfield><subfield code="z">9783110324945</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ontos mathematical logic ;</subfield><subfield code="v">v. 1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2006121879</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=603590</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1195555</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10728709</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">603590</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25806440</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10818724</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn853664918 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:27Z |
institution | BVB |
isbn | 9783110325461 3110325462 |
language | English |
oclc_num | 853664918 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (551 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Ontos, |
record_format | marc |
series | Ontos mathematical logic ; |
series2 | Ontos mathematical logic ; |
spelling | Church's Thesis after 70 years / Adam Olszewski, Jan Woleński, Robert Janusz (eds.). Church's Thesis after seventy years Frankfurt ; New Brunswick, NJ : Ontos, ©2006. 1 online resource (551 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Ontos mathematical logic ; v. 1 Title from PDF title page (viewed on July 25, 2013). Includes bibliographical references and index. Preface; Darren AbramsonÞChurch's Thesis and Philosophy of Mind; Andreas Blass, Yuri GurevichÞAlgorithms: A Quest for Absolute Definitions; Douglas S. BridgesÞChurch's Thesis and Bishop's Constructivism; Selmer Bringsjord, Konstantine ArkoudasÞOn the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis; Carol E. ClelandÞThe Church-Turing Thesis. A Last Vestige of a Failed Mathematical Program; B. Jack CopelandÞTuring's Thesis; Hartmut FitzÞChurch's Thesis and Physical Computation; Janet FolinaÞChurch's Thesis and the Variety of Mathematical Justifications. Andrew HodgesÞDid Church and Turing Have a Thesis about Machines?Leon HorstenÞFormalizing Church's Thesis; Stanisław KrajewskiÞRemarks on Church's Thesis and Gödel's Theorem; Charles McCartyÞThesis and Variations; Elliott MendelsonÞOn the Impossibility of Proving the "Hard-Half" of Church's Thesis; Roman Murawski, Jan WolenskiÞThe Status of Church's Thesis; Jerzy MyckaÞAnalog Computation and Church's Thesis; Piergiorgio OdifreddiÞKreisel's Church; Adam OlszewskiÞChurch's Thesis as Formulated by Church -- An Interpretation; Oron ShagrirÞGödel on Turing on Computability. Stewart ShapiroÞComputability, Proof, and Open-TextureWilfried SiegÞStep by Recursive Step: Church's Analysis of Effective Calculability; Karl SvozilÞPhysics and Metaphysics Look at Computation; David TurnerÞChurch's Thesis and Functional Programming; Index. Church's Thesis (CT) was first published by Alonzo Church in 1935. CT is a proposition that identifies two notions: an intuitive notion of a effectively computable function defined in natural numbers with the notion of a recursive function. Despite of the many efforts of prominent scientists, Church's Thesis has never been falsified. There exists a vast literature concerning the thesis. The aim of the book is to provide one volume summary of the state of research on Church's Thesis. These include the following: different formulations of CT, CT and intuitionism, CT and intensional mathematics. Church, Alonzo, 1903-1995. http://id.loc.gov/authorities/names/n83152979 Church, Alonzo, 1903-1995 fast https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Stelling van Church. gtt Church, Alonzo, 1903-1995. https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq http://id.loc.gov/authorities/names/n83152979 Olszewski, Adam. http://id.loc.gov/authorities/names/no99000101 Woleński, Jan. http://id.loc.gov/authorities/names/n86059304 Janusz, Robert. http://id.loc.gov/authorities/names/n2006055039 has work: Church's Thesis after 70 years (Text) https://id.oclc.org/worldcat/entity/E39PCGQMVj9GR3DkRTYP4387pd https://id.oclc.org/worldcat/ontology/hasWork Print version: Wolenski, Jan. Church's Thesis After 70 Years. Berlin : De Gruyter, ©2006 9783110324945 Ontos mathematical logic ; v. 1. http://id.loc.gov/authorities/names/no2006121879 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=603590 Volltext |
spellingShingle | Church's Thesis after 70 years / Ontos mathematical logic ; Preface; Darren AbramsonÞChurch's Thesis and Philosophy of Mind; Andreas Blass, Yuri GurevichÞAlgorithms: A Quest for Absolute Definitions; Douglas S. BridgesÞChurch's Thesis and Bishop's Constructivism; Selmer Bringsjord, Konstantine ArkoudasÞOn the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis; Carol E. ClelandÞThe Church-Turing Thesis. A Last Vestige of a Failed Mathematical Program; B. Jack CopelandÞTuring's Thesis; Hartmut FitzÞChurch's Thesis and Physical Computation; Janet FolinaÞChurch's Thesis and the Variety of Mathematical Justifications. Andrew HodgesÞDid Church and Turing Have a Thesis about Machines?Leon HorstenÞFormalizing Church's Thesis; Stanisław KrajewskiÞRemarks on Church's Thesis and Gödel's Theorem; Charles McCartyÞThesis and Variations; Elliott MendelsonÞOn the Impossibility of Proving the "Hard-Half" of Church's Thesis; Roman Murawski, Jan WolenskiÞThe Status of Church's Thesis; Jerzy MyckaÞAnalog Computation and Church's Thesis; Piergiorgio OdifreddiÞKreisel's Church; Adam OlszewskiÞChurch's Thesis as Formulated by Church -- An Interpretation; Oron ShagrirÞGödel on Turing on Computability. Stewart ShapiroÞComputability, Proof, and Open-TextureWilfried SiegÞStep by Recursive Step: Church's Analysis of Effective Calculability; Karl SvozilÞPhysics and Metaphysics Look at Computation; David TurnerÞChurch's Thesis and Functional Programming; Index. Church, Alonzo, 1903-1995. http://id.loc.gov/authorities/names/n83152979 Church, Alonzo, 1903-1995 fast https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Stelling van Church. gtt |
subject_GND | http://id.loc.gov/authorities/names/n83152979 http://id.loc.gov/authorities/subjects/sh85078115 |
title | Church's Thesis after 70 years / |
title_alt | Church's Thesis after seventy years |
title_auth | Church's Thesis after 70 years / |
title_exact_search | Church's Thesis after 70 years / |
title_full | Church's Thesis after 70 years / Adam Olszewski, Jan Woleński, Robert Janusz (eds.). |
title_fullStr | Church's Thesis after 70 years / Adam Olszewski, Jan Woleński, Robert Janusz (eds.). |
title_full_unstemmed | Church's Thesis after 70 years / Adam Olszewski, Jan Woleński, Robert Janusz (eds.). |
title_short | Church's Thesis after 70 years / |
title_sort | church s thesis after 70 years |
topic | Church, Alonzo, 1903-1995. http://id.loc.gov/authorities/names/n83152979 Church, Alonzo, 1903-1995 fast https://id.oclc.org/worldcat/entity/E39PBJp9w8QBH9vKtM4BxyYMfq Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Stelling van Church. gtt |
topic_facet | Church, Alonzo, 1903-1995. Church, Alonzo, 1903-1995 Logic, Symbolic and mathematical. Logique symbolique et mathématique. MATHEMATICS Infinity. MATHEMATICS Logic. Logic, Symbolic and mathematical Stelling van Church. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=603590 |
work_keys_str_mv | AT churchalonzo churchsthesisafter70years AT olszewskiadam churchsthesisafter70years AT wolenskijan churchsthesisafter70years AT januszrobert churchsthesisafter70years AT churchalonzo churchsthesisafterseventyyears AT olszewskiadam churchsthesisafterseventyyears AT wolenskijan churchsthesisafterseventyyears AT januszrobert churchsthesisafterseventyyears |