Compactification of Siegel moduli schemes /:
The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further app...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1985.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
107. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms. |
Beschreibung: | Originally presented as the author's thesis (Harvard University, 1984). |
Beschreibung: | 1 online resource (xvi, 326 pages) |
Bibliographie: | Includes bibliographical references (pages 315-322) and index. |
ISBN: | 9781107087675 1107087678 9780511721298 0511721293 9781107099906 1107099900 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn852899071 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s1985 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d CAMBR |d OCLCF |d COO |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
020 | |a 9781107087675 |q (electronic bk.) | ||
020 | |a 1107087678 |q (electronic bk.) | ||
020 | |a 9780511721298 |q (electronic bk.) | ||
020 | |a 0511721293 |q (electronic bk.) | ||
020 | |a 9781107099906 |q (e-book) | ||
020 | |a 1107099900 |q (e-book) | ||
020 | |z 0521312531 | ||
020 | |z 9780521312530 | ||
035 | |a (OCoLC)852899071 | ||
050 | 4 | |a QA331 |b .C4395 1985eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515.7 |2 22 | |
084 | |a 31.43 |2 bcl | ||
084 | |a 31.51 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Chai, Ching-Li. | |
245 | 1 | 0 | |a Compactification of Siegel moduli schemes / |c Ching-Li Chai. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1985. | ||
300 | |a 1 online resource (xvi, 326 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 107 | |
500 | |a Originally presented as the author's thesis (Harvard University, 1984). | ||
504 | |a Includes bibliographical references (pages 315-322) and index. | ||
505 | 0 | 0 | |g Introduction -- |g 1. |t Review of the Siegel moduli schemes -- |g 2. |t Analytic quotient construction of families of degenerating abelian varieties -- |g 3. |t Test families as co-ordinates at the boundary -- |g 4. |t Propagation of Tai's theorem to positive characteristics -- |g 5. |t Application to Siegel modular forms -- |g Appendixes. |
520 | |a The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Moduli theory. |0 http://id.loc.gov/authorities/subjects/sh85086471 | |
650 | 0 | |a Functions, Theta. |0 http://id.loc.gov/authorities/subjects/sh85052352 | |
650 | 0 | |a Forms, Modular. |0 http://id.loc.gov/authorities/subjects/sh85050826 | |
650 | 6 | |a Théorie des modules. | |
650 | 6 | |a Fonctions thêta. | |
650 | 6 | |a Formes modulaires. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Forms, Modular |2 fast | |
650 | 7 | |a Functions, Theta |2 fast | |
650 | 7 | |a Moduli theory |2 fast | |
650 | 7 | |a Siegel-Modulfunktion |2 gnd |0 http://d-nb.info/gnd/4181232-3 | |
650 | 7 | |a Kompaktifizierung |2 gnd |0 http://d-nb.info/gnd/4164859-6 | |
650 | 7 | |a Siegel-Raum |2 gnd |0 http://d-nb.info/gnd/4181229-3 | |
650 | 7 | |a Modulform |2 gnd |0 http://d-nb.info/gnd/4128299-1 | |
650 | 7 | |a Thetafunktion |2 gnd |0 http://d-nb.info/gnd/4185175-4 | |
650 | 7 | |a Modultheorie |2 gnd |0 http://d-nb.info/gnd/4170336-4 | |
650 | 7 | |a Siegel-Modulform |2 gnd |0 http://d-nb.info/gnd/4129460-9 | |
650 | 1 | 7 | |a Moduli spaces. |2 gtt |
650 | 7 | |a Variedades abelianas. |2 larpcal | |
650 | 7 | |a Geometria algébrica. |2 larpcal | |
650 | 7 | |a Fonctions thêta. |2 ram | |
650 | 7 | |a Modules, Théorie des. |2 ram | |
650 | 7 | |a Formes modulaires. |2 ram | |
776 | 0 | 8 | |i Print version: |a Chai, Ching-Li. |t Compactification of Siegel moduli schemes. |d Cambridge ; New York : Cambridge University Press, 1985 |z 0521312531 |w (DLC) 85011398 |w (OCoLC)12103868 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 107. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569284 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25470792 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385273 | ||
938 | |a ebrary |b EBRY |n ebr10733648 | ||
938 | |a EBSCOhost |b EBSC |n 569284 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006546 | ||
938 | |a YBP Library Services |b YANK |n 10862014 | ||
938 | |a YBP Library Services |b YANK |n 10866254 | ||
938 | |a YBP Library Services |b YANK |n 10869751 | ||
938 | |a YBP Library Services |b YANK |n 11063899 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn852899071 |
---|---|
_version_ | 1816882238540742656 |
adam_text | |
any_adam_object | |
author | Chai, Ching-Li |
author_facet | Chai, Ching-Li |
author_role | |
author_sort | Chai, Ching-Li |
author_variant | c l c clc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 .C4395 1985eb |
callnumber-search | QA331 .C4395 1985eb |
callnumber-sort | QA 3331 C4395 41985EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Review of the Siegel moduli schemes -- Analytic quotient construction of families of degenerating abelian varieties -- Test families as co-ordinates at the boundary -- Propagation of Tai's theorem to positive characteristics -- Application to Siegel modular forms -- |
ctrlnum | (OCoLC)852899071 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04645cam a2200877 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn852899071</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130716s1985 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">COO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087675</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087678</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721298</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721293</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107099906</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107099900</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521312531</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521312530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852899071</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331</subfield><subfield code="b">.C4395 1985eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.43</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.51</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chai, Ching-Li.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compactification of Siegel moduli schemes /</subfield><subfield code="c">Ching-Li Chai.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1985.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 326 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally presented as the author's thesis (Harvard University, 1984).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 315-322) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Introduction --</subfield><subfield code="g">1.</subfield><subfield code="t">Review of the Siegel moduli schemes --</subfield><subfield code="g">2.</subfield><subfield code="t">Analytic quotient construction of families of degenerating abelian varieties --</subfield><subfield code="g">3.</subfield><subfield code="t">Test families as co-ordinates at the boundary --</subfield><subfield code="g">4.</subfield><subfield code="t">Propagation of Tai's theorem to positive characteristics --</subfield><subfield code="g">5.</subfield><subfield code="t">Application to Siegel modular forms --</subfield><subfield code="g">Appendixes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Moduli theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086471</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions, Theta.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052352</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forms, Modular.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85050826</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des modules.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions thêta.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes modulaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forms, Modular</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Theta</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moduli theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4181232-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kompaktifizierung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4164859-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Siegel-Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4181229-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modulform</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128299-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4185175-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4170336-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Siegel-Modulform</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4129460-9</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Moduli spaces.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variedades abelianas.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions thêta.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modules, Théorie des.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes modulaires.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Chai, Ching-Li.</subfield><subfield code="t">Compactification of Siegel moduli schemes.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1985</subfield><subfield code="z">0521312531</subfield><subfield code="w">(DLC) 85011398</subfield><subfield code="w">(OCoLC)12103868</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">107.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569284</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25470792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385273</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733648</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569284</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26006546</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10862014</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10866254</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10869751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11063899</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn852899071 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:26Z |
institution | BVB |
isbn | 9781107087675 1107087678 9780511721298 0511721293 9781107099906 1107099900 |
language | English |
oclc_num | 852899071 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 326 pages) |
psigel | ZDB-4-EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Chai, Ching-Li. Compactification of Siegel moduli schemes / Ching-Li Chai. Cambridge ; New York : Cambridge University Press, 1985. 1 online resource (xvi, 326 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 107 Originally presented as the author's thesis (Harvard University, 1984). Includes bibliographical references (pages 315-322) and index. Introduction -- 1. Review of the Siegel moduli schemes -- 2. Analytic quotient construction of families of degenerating abelian varieties -- 3. Test families as co-ordinates at the boundary -- 4. Propagation of Tai's theorem to positive characteristics -- 5. Application to Siegel modular forms -- Appendixes. The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms. Print version record. Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Functions, Theta. http://id.loc.gov/authorities/subjects/sh85052352 Forms, Modular. http://id.loc.gov/authorities/subjects/sh85050826 Théorie des modules. Fonctions thêta. Formes modulaires. MATHEMATICS Functional Analysis. bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Siegel-Modulfunktion gnd http://d-nb.info/gnd/4181232-3 Kompaktifizierung gnd http://d-nb.info/gnd/4164859-6 Siegel-Raum gnd http://d-nb.info/gnd/4181229-3 Modulform gnd http://d-nb.info/gnd/4128299-1 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Modultheorie gnd http://d-nb.info/gnd/4170336-4 Siegel-Modulform gnd http://d-nb.info/gnd/4129460-9 Moduli spaces. gtt Variedades abelianas. larpcal Geometria algébrica. larpcal Fonctions thêta. ram Modules, Théorie des. ram Formes modulaires. ram Print version: Chai, Ching-Li. Compactification of Siegel moduli schemes. Cambridge ; New York : Cambridge University Press, 1985 0521312531 (DLC) 85011398 (OCoLC)12103868 London Mathematical Society lecture note series ; 107. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569284 Volltext |
spellingShingle | Chai, Ching-Li Compactification of Siegel moduli schemes / London Mathematical Society lecture note series ; Review of the Siegel moduli schemes -- Analytic quotient construction of families of degenerating abelian varieties -- Test families as co-ordinates at the boundary -- Propagation of Tai's theorem to positive characteristics -- Application to Siegel modular forms -- Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Functions, Theta. http://id.loc.gov/authorities/subjects/sh85052352 Forms, Modular. http://id.loc.gov/authorities/subjects/sh85050826 Théorie des modules. Fonctions thêta. Formes modulaires. MATHEMATICS Functional Analysis. bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Siegel-Modulfunktion gnd http://d-nb.info/gnd/4181232-3 Kompaktifizierung gnd http://d-nb.info/gnd/4164859-6 Siegel-Raum gnd http://d-nb.info/gnd/4181229-3 Modulform gnd http://d-nb.info/gnd/4128299-1 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Modultheorie gnd http://d-nb.info/gnd/4170336-4 Siegel-Modulform gnd http://d-nb.info/gnd/4129460-9 Moduli spaces. gtt Variedades abelianas. larpcal Geometria algébrica. larpcal Fonctions thêta. ram Modules, Théorie des. ram Formes modulaires. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85086471 http://id.loc.gov/authorities/subjects/sh85052352 http://id.loc.gov/authorities/subjects/sh85050826 http://d-nb.info/gnd/4181232-3 http://d-nb.info/gnd/4164859-6 http://d-nb.info/gnd/4181229-3 http://d-nb.info/gnd/4128299-1 http://d-nb.info/gnd/4185175-4 http://d-nb.info/gnd/4170336-4 http://d-nb.info/gnd/4129460-9 |
title | Compactification of Siegel moduli schemes / |
title_alt | Review of the Siegel moduli schemes -- Analytic quotient construction of families of degenerating abelian varieties -- Test families as co-ordinates at the boundary -- Propagation of Tai's theorem to positive characteristics -- Application to Siegel modular forms -- |
title_auth | Compactification of Siegel moduli schemes / |
title_exact_search | Compactification of Siegel moduli schemes / |
title_full | Compactification of Siegel moduli schemes / Ching-Li Chai. |
title_fullStr | Compactification of Siegel moduli schemes / Ching-Li Chai. |
title_full_unstemmed | Compactification of Siegel moduli schemes / Ching-Li Chai. |
title_short | Compactification of Siegel moduli schemes / |
title_sort | compactification of siegel moduli schemes |
topic | Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Functions, Theta. http://id.loc.gov/authorities/subjects/sh85052352 Forms, Modular. http://id.loc.gov/authorities/subjects/sh85050826 Théorie des modules. Fonctions thêta. Formes modulaires. MATHEMATICS Functional Analysis. bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Siegel-Modulfunktion gnd http://d-nb.info/gnd/4181232-3 Kompaktifizierung gnd http://d-nb.info/gnd/4164859-6 Siegel-Raum gnd http://d-nb.info/gnd/4181229-3 Modulform gnd http://d-nb.info/gnd/4128299-1 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Modultheorie gnd http://d-nb.info/gnd/4170336-4 Siegel-Modulform gnd http://d-nb.info/gnd/4129460-9 Moduli spaces. gtt Variedades abelianas. larpcal Geometria algébrica. larpcal Fonctions thêta. ram Modules, Théorie des. ram Formes modulaires. ram |
topic_facet | Moduli theory. Functions, Theta. Forms, Modular. Théorie des modules. Fonctions thêta. Formes modulaires. MATHEMATICS Functional Analysis. Forms, Modular Functions, Theta Moduli theory Siegel-Modulfunktion Kompaktifizierung Siegel-Raum Modulform Thetafunktion Modultheorie Siegel-Modulform Moduli spaces. Variedades abelianas. Geometria algébrica. Modules, Théorie des. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569284 |
work_keys_str_mv | AT chaichingli compactificationofsiegelmodulischemes |