Combinatorial matrix theory /:
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbe...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1991.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
39. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. |
Beschreibung: | 1 online resource (ix, 367 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 345-362) and index. |
ISBN: | 9781107087750 1107087759 9781107325708 1107325706 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn852898530 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s1991 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d OCLCO |d IDEBK |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d K6U |d INARC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 843762746 |a 1148599354 | ||
020 | |a 9781107087750 |q (electronic bk.) | ||
020 | |a 1107087759 |q (electronic bk.) | ||
020 | |a 9781107325708 |q (electronic bk.) | ||
020 | |a 1107325706 |q (electronic bk.) | ||
020 | |z 0521322650 | ||
020 | |z 9780521322652 | ||
035 | |a (OCoLC)852898530 |z (OCoLC)843762746 |z (OCoLC)1148599354 | ||
050 | 4 | |a QA188 |b .B78 1991eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
082 | 7 | |a 512.9/434 |2 22 | |
084 | |a 31.12 |2 bcl | ||
084 | |a *05-02 |2 msc | ||
084 | |a 05B15 |2 msc | ||
084 | |a 05B20 |2 msc | ||
084 | |a 05C50 |2 msc | ||
084 | |a SK 220 |2 rvk | ||
084 | |a SK 890 |2 rvk | ||
084 | |a 27 |2 sdnb | ||
084 | |a MAT 150f |2 stub | ||
084 | |a MAT 050f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Brualdi, Richard A. | |
245 | 1 | 0 | |a Combinatorial matrix theory / |c Richard A. Brualdi, Herbert J. Ryser. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1991. | ||
300 | |a 1 online resource (ix, 367 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v 39 | |
504 | |a Includes bibliographical references (pages 345-362) and index. | ||
505 | 0 | |a Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares. | |
588 | 0 | |a Print version record. | |
520 | |a This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. | ||
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 0 | |a Combinatorial analysis. |0 http://id.loc.gov/authorities/subjects/sh85028802 | |
650 | 6 | |a Matrices. | |
650 | 6 | |a Analyse combinatoire. | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a Combinatorial analysis |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Kombinatorische Designtheorie |2 gnd |0 http://d-nb.info/gnd/4164747-6 | |
650 | 7 | |a Matrizentheorie |2 gnd |0 http://d-nb.info/gnd/4128970-5 | |
650 | 7 | |a Combinatória. |2 larpcal | |
650 | 7 | |a Matrizes. |2 larpcal | |
650 | 7 | |a Matrices. |2 ram | |
650 | 7 | |a Analyse combinatoire. |2 ram | |
655 | 4 | |a Konbinatorische Analysis. | |
700 | 1 | |a Ryser, Herbert John. | |
776 | 0 | 8 | |i Print version: |a Brualdi, Richard A. |t Combinatorial matrix theory. |d Cambridge [England] ; New York : Cambridge University Press, 1991 |z 0521322650 |w (DLC) 90020210 |w (OCoLC)22597247 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v 39. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569392 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26385460 | ||
938 | |a ebrary |b EBRY |n ebr10733668 | ||
938 | |a EBSCOhost |b EBSC |n 569392 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006524 | ||
938 | |a Internet Archive |b INAR |n combinatorialmat0000brua_x9u3 | ||
938 | |a YBP Library Services |b YANK |n 10866255 | ||
938 | |a YBP Library Services |b YANK |n 10869752 | ||
938 | |a YBP Library Services |b YANK |n 10705745 | ||
938 | |a YBP Library Services |b YANK |n 10862015 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn852898530 |
---|---|
_version_ | 1816882238510333952 |
adam_text | |
any_adam_object | |
author | Brualdi, Richard A. |
author2 | Ryser, Herbert John |
author2_role | |
author2_variant | h j r hj hjr |
author_facet | Brualdi, Richard A. Ryser, Herbert John |
author_role | |
author_sort | Brualdi, Richard A. |
author_variant | r a b ra rab |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .B78 1991eb |
callnumber-search | QA188 .B78 1991eb |
callnumber-sort | QA 3188 B78 41991EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 220 SK 890 |
classification_tum | MAT 150f MAT 050f |
collection | ZDB-4-EBA |
contents | Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares. |
ctrlnum | (OCoLC)852898530 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04983cam a2200853 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn852898530</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130716s1991 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">843762746</subfield><subfield code="a">1148599354</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087750</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087759</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325708</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107325706</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521322650</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521322652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852898530</subfield><subfield code="z">(OCoLC)843762746</subfield><subfield code="z">(OCoLC)1148599354</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.B78 1991eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.12</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*05-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05B15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05C50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brualdi, Richard A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial matrix theory /</subfield><subfield code="c">Richard A. Brualdi, Herbert J. Ryser.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1991.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 367 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">39</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 345-362) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028802</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse combinatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kombinatorische Designtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4164747-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128970-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatória.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrizes.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse combinatoire.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Konbinatorische Analysis.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryser, Herbert John.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Brualdi, Richard A.</subfield><subfield code="t">Combinatorial matrix theory.</subfield><subfield code="d">Cambridge [England] ; New York : Cambridge University Press, 1991</subfield><subfield code="z">0521322650</subfield><subfield code="w">(DLC) 90020210</subfield><subfield code="w">(OCoLC)22597247</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">39.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569392</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385460</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733668</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569392</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26006524</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">combinatorialmat0000brua_x9u3</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10866255</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10869752</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10705745</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10862015</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Konbinatorische Analysis. |
genre_facet | Konbinatorische Analysis. |
id | ZDB-4-EBA-ocn852898530 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:26Z |
institution | BVB |
isbn | 9781107087750 1107087759 9781107325708 1107325706 |
language | English |
oclc_num | 852898530 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 367 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Brualdi, Richard A. Combinatorial matrix theory / Richard A. Brualdi, Herbert J. Ryser. Cambridge [England] ; New York : Cambridge University Press, 1991. 1 online resource (ix, 367 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; 39 Includes bibliographical references (pages 345-362) and index. Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares. Print version record. This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Matrices. Analyse combinatoire. MATHEMATICS Matrices. bisacsh Combinatorial analysis fast Matrices fast Kombinatorische Designtheorie gnd http://d-nb.info/gnd/4164747-6 Matrizentheorie gnd http://d-nb.info/gnd/4128970-5 Combinatória. larpcal Matrizes. larpcal Matrices. ram Analyse combinatoire. ram Konbinatorische Analysis. Ryser, Herbert John. Print version: Brualdi, Richard A. Combinatorial matrix theory. Cambridge [England] ; New York : Cambridge University Press, 1991 0521322650 (DLC) 90020210 (OCoLC)22597247 Encyclopedia of mathematics and its applications ; 39. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569392 Volltext |
spellingShingle | Brualdi, Richard A. Combinatorial matrix theory / Encyclopedia of mathematics and its applications ; Incidence matrices -- Matrices and graphs -- Matrices and digraphs -- Matrices and bigraphs -- Combinatorial matrix algebra -- Existence theorems for combinatorially constrained matrices -- Some special graphs -- The permanent -- Latin squares. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Matrices. Analyse combinatoire. MATHEMATICS Matrices. bisacsh Combinatorial analysis fast Matrices fast Kombinatorische Designtheorie gnd http://d-nb.info/gnd/4164747-6 Matrizentheorie gnd http://d-nb.info/gnd/4128970-5 Combinatória. larpcal Matrizes. larpcal Matrices. ram Analyse combinatoire. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082210 http://id.loc.gov/authorities/subjects/sh85028802 http://d-nb.info/gnd/4164747-6 http://d-nb.info/gnd/4128970-5 |
title | Combinatorial matrix theory / |
title_auth | Combinatorial matrix theory / |
title_exact_search | Combinatorial matrix theory / |
title_full | Combinatorial matrix theory / Richard A. Brualdi, Herbert J. Ryser. |
title_fullStr | Combinatorial matrix theory / Richard A. Brualdi, Herbert J. Ryser. |
title_full_unstemmed | Combinatorial matrix theory / Richard A. Brualdi, Herbert J. Ryser. |
title_short | Combinatorial matrix theory / |
title_sort | combinatorial matrix theory |
topic | Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Matrices. Analyse combinatoire. MATHEMATICS Matrices. bisacsh Combinatorial analysis fast Matrices fast Kombinatorische Designtheorie gnd http://d-nb.info/gnd/4164747-6 Matrizentheorie gnd http://d-nb.info/gnd/4128970-5 Combinatória. larpcal Matrizes. larpcal Matrices. ram Analyse combinatoire. ram |
topic_facet | Matrices. Combinatorial analysis. Analyse combinatoire. MATHEMATICS Matrices. Combinatorial analysis Matrices Kombinatorische Designtheorie Matrizentheorie Combinatória. Matrizes. Konbinatorische Analysis. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569392 |
work_keys_str_mv | AT brualdiricharda combinatorialmatrixtheory AT ryserherbertjohn combinatorialmatrixtheory |