Character theory for the odd order theorem /:
The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English French |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2000.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
272. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library. |
Beschreibung: | "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--Title page verso |
Beschreibung: | 1 online resource (vii, 154 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781107089198 1107089190 9780511565861 0511565860 1299748937 9781299748934 1139885502 9781139885508 1107103509 9781107103504 1107095395 9781107095397 1107092159 9781107092150 1107101026 9781107101029 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn852896275 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s2000 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d CAMBR |d OCLCF |d OCLCQ |d AGLDB |d XFH |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 994597521 |a 1162031802 |a 1167124428 |a 1241838663 |a 1242478659 | ||
020 | |a 9781107089198 |q (electronic bk.) | ||
020 | |a 1107089190 |q (electronic bk.) | ||
020 | |a 9780511565861 |q (electronic bk.) | ||
020 | |a 0511565860 |q (electronic bk.) | ||
020 | |a 1299748937 | ||
020 | |a 9781299748934 | ||
020 | |a 1139885502 | ||
020 | |a 9781139885508 | ||
020 | |a 1107103509 | ||
020 | |a 9781107103504 | ||
020 | |a 1107095395 | ||
020 | |a 9781107095397 | ||
020 | |a 1107092159 | ||
020 | |a 9781107092150 | ||
020 | |a 1107101026 | ||
020 | |a 9781107101029 | ||
020 | |z 052164660X | ||
020 | |z 9780521646604 | ||
035 | |a (OCoLC)852896275 |z (OCoLC)994597521 |z (OCoLC)1162031802 |z (OCoLC)1167124428 |z (OCoLC)1241838663 |z (OCoLC)1242478659 | ||
041 | 1 | |a eng |h fre | |
050 | 4 | |a QA177 |b .P48 2000eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511/.2 |2 22 | |
084 | |a 31.21 |2 bcl | ||
084 | |a PB 09 |2 blsrissc | ||
049 | |a MAIN | ||
100 | 1 | |a Peterfalvi, Thomas. | |
245 | 1 | 0 | |a Character theory for the odd order theorem / |c Thomas Peterfalvi ; translated by Robert Sandling. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2000. | ||
300 | |a 1 online resource (vii, 154 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 272 | |
500 | |a "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--Title page verso | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g pt. I. |t Character Theory for the Odd Order Theorem. |g 1. |t Preliminary Results from Character Theory. |g 2. |t The Dade Isometry. |g 3. |t T1-Subsets with Cyclic Normalizers. |g 4. |t The Dade Isometry for a Certain Type of Subgroup. |g 5. |t Coherence. |g 6. |t Some Coherence Theorems. |g 7. |t Non-existence of a Certain Type of Group of Odd Order. |g 8. |t Structure of a Minimal Simple Group of Odd Order. |g 9. |t On the Maximal Subgroups of G of Types II, III and IV. |g 10. |t Maximal Subgroups of Types III, IV and V. |g 11. |t Maximal Subgroups of Types III and IV. |g 12. |t Maximal Subgroups of Type I. |g 13. |t The Subgroups S and T. |g 14. |t Non-existence of G -- |g pt. II. |t A Theorem of Suzuki. |g Ch. I. |t General Properties of G. |g 1. |t Consequences of Hypothesis (A1). |g 2. |t The Structure of Q and of K. |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
520 | |a The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library. | ||
650 | 0 | |a Feit-Thompson theorem. |0 http://id.loc.gov/authorities/subjects/sh94006145 | |
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Characters of groups. |0 http://id.loc.gov/authorities/subjects/sh85022626 | |
650 | 6 | |a Théorème de Feit et Thompson. | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Caractères de groupes. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Characters of groups |2 fast | |
650 | 7 | |a Feit-Thompson theorem |2 fast | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Charakter |g Gruppentheorie |2 gnd |0 http://d-nb.info/gnd/4158438-7 | |
650 | 7 | |a Feit-Thompson-Theorem |2 gnd |0 http://d-nb.info/gnd/4391595-4 | |
650 | 7 | |a Endliche Gruppe |2 gnd | |
650 | 1 | 7 | |a Eindige groepen. |2 gtt |
650 | 1 | 7 | |a Characters. |2 gtt |
650 | 7 | |a Grupos finitos. |2 larpcal | |
650 | 7 | |a Álgebra. |2 larpcal | |
650 | 7 | |a Feit-Thompson, Théorème de. |2 ram | |
650 | 7 | |a Groupes finis. |2 ram | |
650 | 7 | |a Caractères de groupes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Peterfalvi, Thomas. |t Character theory for the odd order theorem. |d Cambridge ; New York : Cambridge University Press, 2000 |z 052164660X |w (DLC) 99025752 |w (OCoLC)41090735 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 272. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569282 |3 Volltext |
938 | |a Internet Archive |b INAR |n charactertheoryf0000pete | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25473532 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385394 | ||
938 | |a ebrary |b EBRY |n ebr10733646 | ||
938 | |a EBSCOhost |b EBSC |n 569282 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006778 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn852896275 |
---|---|
_version_ | 1816882238428545024 |
adam_text | |
any_adam_object | |
author | Peterfalvi, Thomas |
author_facet | Peterfalvi, Thomas |
author_role | |
author_sort | Peterfalvi, Thomas |
author_variant | t p tp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .P48 2000eb |
callnumber-search | QA177 .P48 2000eb |
callnumber-sort | QA 3177 P48 42000EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Character Theory for the Odd Order Theorem. Preliminary Results from Character Theory. The Dade Isometry. T1-Subsets with Cyclic Normalizers. The Dade Isometry for a Certain Type of Subgroup. Coherence. Some Coherence Theorems. Non-existence of a Certain Type of Group of Odd Order. Structure of a Minimal Simple Group of Odd Order. On the Maximal Subgroups of G of Types II, III and IV. Maximal Subgroups of Types III, IV and V. Maximal Subgroups of Types III and IV. Maximal Subgroups of Type I. The Subgroups S and T. Non-existence of G -- A Theorem of Suzuki. General Properties of G. Consequences of Hypothesis (A1). The Structure of Q and of K. |
ctrlnum | (OCoLC)852896275 |
dewey-full | 511/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.2 |
dewey-search | 511/.2 |
dewey-sort | 3511 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05470cam a2200961 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn852896275</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130716s2000 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">XFH</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">994597521</subfield><subfield code="a">1162031802</subfield><subfield code="a">1167124428</subfield><subfield code="a">1241838663</subfield><subfield code="a">1242478659</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089198</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089190</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565861</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511565860</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299748937</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299748934</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139885502</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139885508</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107103509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107103504</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107095395</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107095397</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107092159</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107092150</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107101026</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107101029</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052164660X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521646604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852896275</subfield><subfield code="z">(OCoLC)994597521</subfield><subfield code="z">(OCoLC)1162031802</subfield><subfield code="z">(OCoLC)1167124428</subfield><subfield code="z">(OCoLC)1241838663</subfield><subfield code="z">(OCoLC)1242478659</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.P48 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PB 09</subfield><subfield code="2">blsrissc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peterfalvi, Thomas.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Character theory for the odd order theorem /</subfield><subfield code="c">Thomas Peterfalvi ; translated by Robert Sandling.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 154 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">272</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--Title page verso</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">pt. I.</subfield><subfield code="t">Character Theory for the Odd Order Theorem.</subfield><subfield code="g">1.</subfield><subfield code="t">Preliminary Results from Character Theory.</subfield><subfield code="g">2.</subfield><subfield code="t">The Dade Isometry.</subfield><subfield code="g">3.</subfield><subfield code="t">T1-Subsets with Cyclic Normalizers.</subfield><subfield code="g">4.</subfield><subfield code="t">The Dade Isometry for a Certain Type of Subgroup.</subfield><subfield code="g">5.</subfield><subfield code="t">Coherence.</subfield><subfield code="g">6.</subfield><subfield code="t">Some Coherence Theorems.</subfield><subfield code="g">7.</subfield><subfield code="t">Non-existence of a Certain Type of Group of Odd Order.</subfield><subfield code="g">8.</subfield><subfield code="t">Structure of a Minimal Simple Group of Odd Order.</subfield><subfield code="g">9.</subfield><subfield code="t">On the Maximal Subgroups of G of Types II, III and IV.</subfield><subfield code="g">10.</subfield><subfield code="t">Maximal Subgroups of Types III, IV and V.</subfield><subfield code="g">11.</subfield><subfield code="t">Maximal Subgroups of Types III and IV.</subfield><subfield code="g">12.</subfield><subfield code="t">Maximal Subgroups of Type I.</subfield><subfield code="g">13.</subfield><subfield code="t">The Subgroups S and T.</subfield><subfield code="g">14.</subfield><subfield code="t">Non-existence of G --</subfield><subfield code="g">pt. II.</subfield><subfield code="t">A Theorem of Suzuki.</subfield><subfield code="g">Ch. I.</subfield><subfield code="t">General Properties of G.</subfield><subfield code="g">1.</subfield><subfield code="t">Consequences of Hypothesis (A1).</subfield><subfield code="g">2.</subfield><subfield code="t">The Structure of Q and of K.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Feit-Thompson theorem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94006145</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Characters of groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022626</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème de Feit et Thompson.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Caractères de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Characters of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson theorem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4158438-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4391595-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Eindige groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Characters.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feit-Thompson, Théorème de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes finis.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Caractères de groupes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Peterfalvi, Thomas.</subfield><subfield code="t">Character theory for the odd order theorem.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2000</subfield><subfield code="z">052164660X</subfield><subfield code="w">(DLC) 99025752</subfield><subfield code="w">(OCoLC)41090735</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">272.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569282</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">charactertheoryf0000pete</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25473532</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385394</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733646</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569282</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26006778</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn852896275 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:26Z |
institution | BVB |
isbn | 9781107089198 1107089190 9780511565861 0511565860 1299748937 9781299748934 1139885502 9781139885508 1107103509 9781107103504 1107095395 9781107095397 1107092159 9781107092150 1107101026 9781107101029 |
language | English French |
oclc_num | 852896275 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 154 pages) |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Peterfalvi, Thomas. Character theory for the odd order theorem / Thomas Peterfalvi ; translated by Robert Sandling. Cambridge ; New York : Cambridge University Press, 2000. 1 online resource (vii, 154 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 272 "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--Title page verso Includes bibliographical references and index. pt. I. Character Theory for the Odd Order Theorem. 1. Preliminary Results from Character Theory. 2. The Dade Isometry. 3. T1-Subsets with Cyclic Normalizers. 4. The Dade Isometry for a Certain Type of Subgroup. 5. Coherence. 6. Some Coherence Theorems. 7. Non-existence of a Certain Type of Group of Odd Order. 8. Structure of a Minimal Simple Group of Odd Order. 9. On the Maximal Subgroups of G of Types II, III and IV. 10. Maximal Subgroups of Types III, IV and V. 11. Maximal Subgroups of Types III and IV. 12. Maximal Subgroups of Type I. 13. The Subgroups S and T. 14. Non-existence of G -- pt. II. A Theorem of Suzuki. Ch. I. General Properties of G. 1. Consequences of Hypothesis (A1). 2. The Structure of Q and of K. Print version record. English. The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library. Feit-Thompson theorem. http://id.loc.gov/authorities/subjects/sh94006145 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Characters of groups. http://id.loc.gov/authorities/subjects/sh85022626 Théorème de Feit et Thompson. Groupes finis. Caractères de groupes. MATHEMATICS General. bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Charakter Gruppentheorie gnd http://d-nb.info/gnd/4158438-7 Feit-Thompson-Theorem gnd http://d-nb.info/gnd/4391595-4 Endliche Gruppe gnd Eindige groepen. gtt Characters. gtt Grupos finitos. larpcal Álgebra. larpcal Feit-Thompson, Théorème de. ram Groupes finis. ram Caractères de groupes. ram Print version: Peterfalvi, Thomas. Character theory for the odd order theorem. Cambridge ; New York : Cambridge University Press, 2000 052164660X (DLC) 99025752 (OCoLC)41090735 London Mathematical Society lecture note series ; 272. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569282 Volltext |
spellingShingle | Peterfalvi, Thomas Character theory for the odd order theorem / London Mathematical Society lecture note series ; Character Theory for the Odd Order Theorem. Preliminary Results from Character Theory. The Dade Isometry. T1-Subsets with Cyclic Normalizers. The Dade Isometry for a Certain Type of Subgroup. Coherence. Some Coherence Theorems. Non-existence of a Certain Type of Group of Odd Order. Structure of a Minimal Simple Group of Odd Order. On the Maximal Subgroups of G of Types II, III and IV. Maximal Subgroups of Types III, IV and V. Maximal Subgroups of Types III and IV. Maximal Subgroups of Type I. The Subgroups S and T. Non-existence of G -- A Theorem of Suzuki. General Properties of G. Consequences of Hypothesis (A1). The Structure of Q and of K. Feit-Thompson theorem. http://id.loc.gov/authorities/subjects/sh94006145 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Characters of groups. http://id.loc.gov/authorities/subjects/sh85022626 Théorème de Feit et Thompson. Groupes finis. Caractères de groupes. MATHEMATICS General. bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Charakter Gruppentheorie gnd http://d-nb.info/gnd/4158438-7 Feit-Thompson-Theorem gnd http://d-nb.info/gnd/4391595-4 Endliche Gruppe gnd Eindige groepen. gtt Characters. gtt Grupos finitos. larpcal Álgebra. larpcal Feit-Thompson, Théorème de. ram Groupes finis. ram Caractères de groupes. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh94006145 http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85022626 http://d-nb.info/gnd/4158438-7 http://d-nb.info/gnd/4391595-4 |
title | Character theory for the odd order theorem / |
title_alt | Character Theory for the Odd Order Theorem. Preliminary Results from Character Theory. The Dade Isometry. T1-Subsets with Cyclic Normalizers. The Dade Isometry for a Certain Type of Subgroup. Coherence. Some Coherence Theorems. Non-existence of a Certain Type of Group of Odd Order. Structure of a Minimal Simple Group of Odd Order. On the Maximal Subgroups of G of Types II, III and IV. Maximal Subgroups of Types III, IV and V. Maximal Subgroups of Types III and IV. Maximal Subgroups of Type I. The Subgroups S and T. Non-existence of G -- A Theorem of Suzuki. General Properties of G. Consequences of Hypothesis (A1). The Structure of Q and of K. |
title_auth | Character theory for the odd order theorem / |
title_exact_search | Character theory for the odd order theorem / |
title_full | Character theory for the odd order theorem / Thomas Peterfalvi ; translated by Robert Sandling. |
title_fullStr | Character theory for the odd order theorem / Thomas Peterfalvi ; translated by Robert Sandling. |
title_full_unstemmed | Character theory for the odd order theorem / Thomas Peterfalvi ; translated by Robert Sandling. |
title_short | Character theory for the odd order theorem / |
title_sort | character theory for the odd order theorem |
topic | Feit-Thompson theorem. http://id.loc.gov/authorities/subjects/sh94006145 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Characters of groups. http://id.loc.gov/authorities/subjects/sh85022626 Théorème de Feit et Thompson. Groupes finis. Caractères de groupes. MATHEMATICS General. bisacsh Characters of groups fast Feit-Thompson theorem fast Finite groups fast Charakter Gruppentheorie gnd http://d-nb.info/gnd/4158438-7 Feit-Thompson-Theorem gnd http://d-nb.info/gnd/4391595-4 Endliche Gruppe gnd Eindige groepen. gtt Characters. gtt Grupos finitos. larpcal Álgebra. larpcal Feit-Thompson, Théorème de. ram Groupes finis. ram Caractères de groupes. ram |
topic_facet | Feit-Thompson theorem. Finite groups. Characters of groups. Théorème de Feit et Thompson. Groupes finis. Caractères de groupes. MATHEMATICS General. Characters of groups Feit-Thompson theorem Finite groups Charakter Gruppentheorie Feit-Thompson-Theorem Endliche Gruppe Eindige groepen. Characters. Grupos finitos. Álgebra. Feit-Thompson, Théorème de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569282 |
work_keys_str_mv | AT peterfalvithomas charactertheoryfortheoddordertheorem |