Microlocal analysis for differential operators :: an introduction /
This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emp...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY :
Cambridge University Press,
©1994.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
196. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature. |
Beschreibung: | 1 online resource (151 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 145-148) and indexes. |
ISBN: | 9781107088566 1107088569 9780511721441 0511721447 1139884921 9781139884921 1107100518 9781107100510 1107102995 9781107102996 1107094747 9781107094741 1107091497 9781107091498 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn852896200 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s1994 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d CAMBR |d OCLCF |d OCLCQ |d AGLDB |d HEBIS |d JBG |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d UKAHL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 1162457133 |a 1241914892 |a 1242482353 |a 1433229380 | ||
020 | |a 9781107088566 |q (electronic bk.) | ||
020 | |a 1107088569 |q (electronic bk.) | ||
020 | |a 9780511721441 |q (electronic bk.) | ||
020 | |a 0511721447 |q (electronic bk.) | ||
020 | |a 1139884921 | ||
020 | |a 9781139884921 | ||
020 | |a 1107100518 | ||
020 | |a 9781107100510 | ||
020 | |a 1107102995 | ||
020 | |a 9781107102996 | ||
020 | |a 1107094747 | ||
020 | |a 9781107094741 | ||
020 | |a 1107091497 | ||
020 | |a 9781107091498 | ||
020 | |z 0521449863 | ||
020 | |z 9780521449861 | ||
035 | |a (OCoLC)852896200 |z (OCoLC)1162457133 |z (OCoLC)1241914892 |z (OCoLC)1242482353 |z (OCoLC)1433229380 | ||
050 | 4 | |a QA329.4 |b .G75 1994eb | |
055 | 8 | |a QA329.5 |b .M626 1994 | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
080 | 0 | |a 513.294 | |
082 | 7 | |a 515/.7242 |2 22 | |
084 | |a 31.49 |2 bcl | ||
084 | |a PB 62 |2 blsrissc | ||
084 | |a PC 48 |2 blsrissc | ||
049 | |a MAIN | ||
100 | 1 | |a Grigis, Alain. | |
245 | 1 | 0 | |a Microlocal analysis for differential operators : |b an introduction / |c Alain Grigis, Johannes Sjöstrand. |
260 | |a Cambridge ; |a New York, NY : |b Cambridge University Press, |c ©1994. | ||
300 | |a 1 online resource (151 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 196 | |
504 | |a Includes bibliographical references (pages 145-148) and indexes. | ||
505 | 0 | |a 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators. | |
588 | 0 | |a Print version record. | |
520 | |a This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature. | ||
650 | 0 | |a Differential operators. |0 http://id.loc.gov/authorities/subjects/sh85037921 | |
650 | 0 | |a Microlocal analysis. |0 http://id.loc.gov/authorities/subjects/sh92003594 | |
650 | 6 | |a Opérateurs différentiels. | |
650 | 6 | |a Analyse microlocale. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Differential operators |2 fast | |
650 | 7 | |a Microlocal analysis |2 fast | |
650 | 7 | |a Pseudodifferentialoperator |2 gnd |0 http://d-nb.info/gnd/4047640-6 | |
650 | 7 | |a Fourier-Integraloperator |2 gnd |0 http://d-nb.info/gnd/4155104-7 | |
650 | 7 | |a Symplektische Geometrie |2 gnd |0 http://d-nb.info/gnd/4194232-2 | |
650 | 1 | 7 | |a Lokale analyse (wiskunde) |2 gtt |
650 | 7 | |a Opérateurs différentiels. |2 ram | |
650 | 7 | |a Analyse microlocale. |2 ram | |
700 | 1 | |a Sjöstrand, J. |q (Johannes) |1 https://id.oclc.org/worldcat/entity/E39PBJwD4M6hYCb9Dbh8jjdbBP |0 http://id.loc.gov/authorities/names/n88630485 | |
776 | 0 | 8 | |i Print version: |a Grigis, Alain. |t Microlocal analysis for differential operators. |d Cambridge ; New York, NY : Cambridge University Press, ©1994 |z 0521449863 |w (DLC) 94122496 |w (OCoLC)30012038 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 196. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569305 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25690030 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385342 | ||
938 | |a ebrary |b EBRY |n ebr10733662 | ||
938 | |a EBSCOhost |b EBSC |n 569305 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn852896200 |
---|---|
_version_ | 1816882238415962113 |
adam_text | |
any_adam_object | |
author | Grigis, Alain |
author2 | Sjöstrand, J. (Johannes) |
author2_role | |
author2_variant | j s js |
author_GND | http://id.loc.gov/authorities/names/n88630485 |
author_facet | Grigis, Alain Sjöstrand, J. (Johannes) |
author_role | |
author_sort | Grigis, Alain |
author_variant | a g ag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA329 |
callnumber-raw | QA329.4 .G75 1994eb |
callnumber-search | QA329.4 .G75 1994eb |
callnumber-sort | QA 3329.4 G75 41994EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators. |
ctrlnum | (OCoLC)852896200 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05026cam a2200841 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn852896200</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130716s1994 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1162457133</subfield><subfield code="a">1241914892</subfield><subfield code="a">1242482353</subfield><subfield code="a">1433229380</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088566</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088569</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721441</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721447</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139884921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139884921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107100518</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107100510</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107102995</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107102996</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107094747</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107094741</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107091497</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107091498</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521449863</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521449861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852896200</subfield><subfield code="z">(OCoLC)1162457133</subfield><subfield code="z">(OCoLC)1241914892</subfield><subfield code="z">(OCoLC)1242482353</subfield><subfield code="z">(OCoLC)1433229380</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA329.4</subfield><subfield code="b">.G75 1994eb</subfield></datafield><datafield tag="055" ind1=" " ind2="8"><subfield code="a">QA329.5</subfield><subfield code="b">.M626 1994</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="080" ind1="0" ind2=" "><subfield code="a">513.294</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PB 62</subfield><subfield code="2">blsrissc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PC 48</subfield><subfield code="2">blsrissc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grigis, Alain.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microlocal analysis for differential operators :</subfield><subfield code="b">an introduction /</subfield><subfield code="c">Alain Grigis, Johannes Sjöstrand.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York, NY :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1994.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (151 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">196</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 145-148) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037921</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microlocal analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92003594</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs différentiels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse microlocale.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microlocal analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4047640-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-Integraloperator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4155104-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4194232-2</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lokale analyse (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs différentiels.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse microlocale.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sjöstrand, J.</subfield><subfield code="q">(Johannes)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwD4M6hYCb9Dbh8jjdbBP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88630485</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Grigis, Alain.</subfield><subfield code="t">Microlocal analysis for differential operators.</subfield><subfield code="d">Cambridge ; New York, NY : Cambridge University Press, ©1994</subfield><subfield code="z">0521449863</subfield><subfield code="w">(DLC) 94122496</subfield><subfield code="w">(OCoLC)30012038</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">196.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569305</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25690030</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385342</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733662</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569305</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn852896200 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:26Z |
institution | BVB |
isbn | 9781107088566 1107088569 9780511721441 0511721447 1139884921 9781139884921 1107100518 9781107100510 1107102995 9781107102996 1107094747 9781107094741 1107091497 9781107091498 |
language | English |
oclc_num | 852896200 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (151 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Grigis, Alain. Microlocal analysis for differential operators : an introduction / Alain Grigis, Johannes Sjöstrand. Cambridge ; New York, NY : Cambridge University Press, ©1994. 1 online resource (151 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 196 Includes bibliographical references (pages 145-148) and indexes. 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators. Print version record. This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature. Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Microlocal analysis. http://id.loc.gov/authorities/subjects/sh92003594 Opérateurs différentiels. Analyse microlocale. MATHEMATICS Functional Analysis. bisacsh Differential operators fast Microlocal analysis fast Pseudodifferentialoperator gnd http://d-nb.info/gnd/4047640-6 Fourier-Integraloperator gnd http://d-nb.info/gnd/4155104-7 Symplektische Geometrie gnd http://d-nb.info/gnd/4194232-2 Lokale analyse (wiskunde) gtt Opérateurs différentiels. ram Analyse microlocale. ram Sjöstrand, J. (Johannes) https://id.oclc.org/worldcat/entity/E39PBJwD4M6hYCb9Dbh8jjdbBP http://id.loc.gov/authorities/names/n88630485 Print version: Grigis, Alain. Microlocal analysis for differential operators. Cambridge ; New York, NY : Cambridge University Press, ©1994 0521449863 (DLC) 94122496 (OCoLC)30012038 London Mathematical Society lecture note series ; 196. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569305 Volltext |
spellingShingle | Grigis, Alain Microlocal analysis for differential operators : an introduction / London Mathematical Society lecture note series ; 1. Symbols and oscillatory integrals -- 2. The method of stationary phase -- 3. Pseudodifferential operators -- 4. Application to elliptic operators and L[superscript 2] continuity -- 5. Local symplectic geometry I (Hamilton-Jacobi theory) -- 6. The strictly hyperbolic Cauchy problem construction of a parametrix -- 7. The wavefront set (singular spectrum) of a distribution -- 8. Propagation of singularities for operators of real principle type -- 9. Local symplectic geometry II -- 10. Canonical transformations of pseudodifferential operators -- 11. Global theory of Fourier integral operators -- 12. Spectral theory for elliptic operators. Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Microlocal analysis. http://id.loc.gov/authorities/subjects/sh92003594 Opérateurs différentiels. Analyse microlocale. MATHEMATICS Functional Analysis. bisacsh Differential operators fast Microlocal analysis fast Pseudodifferentialoperator gnd http://d-nb.info/gnd/4047640-6 Fourier-Integraloperator gnd http://d-nb.info/gnd/4155104-7 Symplektische Geometrie gnd http://d-nb.info/gnd/4194232-2 Lokale analyse (wiskunde) gtt Opérateurs différentiels. ram Analyse microlocale. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037921 http://id.loc.gov/authorities/subjects/sh92003594 http://d-nb.info/gnd/4047640-6 http://d-nb.info/gnd/4155104-7 http://d-nb.info/gnd/4194232-2 |
title | Microlocal analysis for differential operators : an introduction / |
title_auth | Microlocal analysis for differential operators : an introduction / |
title_exact_search | Microlocal analysis for differential operators : an introduction / |
title_full | Microlocal analysis for differential operators : an introduction / Alain Grigis, Johannes Sjöstrand. |
title_fullStr | Microlocal analysis for differential operators : an introduction / Alain Grigis, Johannes Sjöstrand. |
title_full_unstemmed | Microlocal analysis for differential operators : an introduction / Alain Grigis, Johannes Sjöstrand. |
title_short | Microlocal analysis for differential operators : |
title_sort | microlocal analysis for differential operators an introduction |
title_sub | an introduction / |
topic | Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Microlocal analysis. http://id.loc.gov/authorities/subjects/sh92003594 Opérateurs différentiels. Analyse microlocale. MATHEMATICS Functional Analysis. bisacsh Differential operators fast Microlocal analysis fast Pseudodifferentialoperator gnd http://d-nb.info/gnd/4047640-6 Fourier-Integraloperator gnd http://d-nb.info/gnd/4155104-7 Symplektische Geometrie gnd http://d-nb.info/gnd/4194232-2 Lokale analyse (wiskunde) gtt Opérateurs différentiels. ram Analyse microlocale. ram |
topic_facet | Differential operators. Microlocal analysis. Opérateurs différentiels. Analyse microlocale. MATHEMATICS Functional Analysis. Differential operators Microlocal analysis Pseudodifferentialoperator Fourier-Integraloperator Symplektische Geometrie Lokale analyse (wiskunde) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569305 |
work_keys_str_mv | AT grigisalain microlocalanalysisfordifferentialoperatorsanintroduction AT sjostrandj microlocalanalysisfordifferentialoperatorsanintroduction |