Symmetry relationships between crystal structures :: applications of crystallographic group theory in crystal chemistry /
This text presents the basic information needed to understand and to organise the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2013.
|
Schriftenreihe: | International Union of Crystallography texts on crystallography ;
18. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This text presents the basic information needed to understand and to organise the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191648793 0191648795 0191648809 9780191648809 9781299684829 1299684823 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn850179696 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130623s2013 enka ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d N$T |d IDEBK |d CDX |d COO |d E7B |d OCLCF |d OTZ |d UIU |d OCLCQ |d VGM |d OCLCQ |d YOU |d K6U |d OCLCQ |d OCLCO |d BTN |d OCLCO |d EBLCP |d AZU |d DEBSZ |d STBDS |d IL4I4 |d TKN |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 850162150 | ||
020 | |a 9780191648793 |q (electronic bk.) | ||
020 | |a 0191648795 |q (electronic bk.) | ||
020 | |a 0191648809 |q (electronic bk.) | ||
020 | |a 9780191648809 |q (electronic bk.) | ||
020 | |a 9781299684829 |q (MyiLibrary) | ||
020 | |a 1299684823 |q (MyiLibrary) | ||
020 | |z 9780199669950 |q (hbk.) | ||
020 | |z 0199669953 |q (hbk.) | ||
035 | |a (OCoLC)850179696 |z (OCoLC)850162150 | ||
050 | 4 | |a QD921 | |
072 | 7 | |a SCI |x 016000 |2 bisacsh | |
082 | 7 | |a 548.81 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Müller, Ulrich, |d 1940 July 6- |1 https://id.oclc.org/worldcat/entity/E39PBJv8KWXhk9JFcgxBMvvvHC |0 http://id.loc.gov/authorities/names/n92065173 | |
245 | 1 | 0 | |a Symmetry relationships between crystal structures : |b applications of crystallographic group theory in crystal chemistry / |c Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen. |
260 | |a Oxford : |b Oxford University Press, |c 2013. | ||
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a IUCr texts on crystallography ; |v 18 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a This text presents the basic information needed to understand and to organise the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals. | |
505 | 0 | |a Cover; Title Page; Copyright Page; Dedication; Preface; Contents; List of symbols; 1.1 The symmetry principle in crystal chemistry; 1.2 Introductory examples; 1 Introduction; I Crystallographic Foundations; 2 Basics of crystallography, part 1; 2.1 Introductory remarks; 2.2 Crystals and lattices; 2.3 Appropriate coordinate systems, crystal coordinates; 2.4 Lattice directions, net planes, and reciprocal lattice; 2.5 Calculation of distances and angles; 3 Mappings; 3.1 Mappings in crystallography; 3.1.1 An example; 3.1.2 Symmetry operations; 3.2 Affine mappings. | |
505 | 8 | |a 3.3 Application of (n + 1) × (n + 1) matrices3.4 Affine mappings of vectors; 3.5 Isometries; 3.6 Types of isometries; 3.7 Changes of the coordinate system; 3.7.1 Origin shift; 3.7.2 Basis change; 3.7.3 General transformation of the coordinate system; 3.7.4 The effect of coordinate transformations on mappings; 3.7.5 Several consecutive transformations of the coordinate system; 3.7.6 Calculation of origin shifts from coordinate transformations; 3.7.7 Transformation of further crystallographic quantities; Exercises; 4 Basics of crystallography, part 2. | |
505 | 8 | |a 4.1 The description of crystal symmetry in International Tables A: Positions4.2 Crystallographic symmetry operations; 4.3 Geometric interpretation of the matrix-column pair (W, w) of a crystallographic symmetry operation; 4.4 Derivation of the matrix-column pair of an isometry; Exercises; 5 Group theory; 5.1 Two examples of groups; 5.2 Basics of group theory; 5.3 Coset decomposition of a group; 5.4 Conjugation; 5.5 Factor groups and homomorphisms; 5.6 Action of a group on a set; Exercises; 6 Basics of crystallography, part 3; 6.1 Space groups and point groups; 6.1.1 Molecular symmetry. | |
505 | 8 | |a 6.1.2 The space group and its point group6.1.3 Classification of the space groups; 6.2 The lattice of a space group; 6.3 Space-group symbols; 6.3.1 Hermann-Mauguin symbols; 6.3.2 Schoenflies symbols; 6.4 Description of space-group symmetry in International Tables A; 6.4.1 Diagrams of the symmetry elements; 6.4.2 Lists of the Wyckoff positions; 6.4.3 Symmetry operations of the general position; 6.4.4 Diagrams of the general positions; 6.5 General and special positions of the space groups; 6.5.1 The general position of a space group; 6.5.2 The special positions of a space group. | |
505 | 8 | |a 6.6 The difference between space group and space-group typeExercises; 7 Subgroups and supergroups of point and space groups; 7.1 Subgroups of the point groups of molecules; 7.2 Subgroups of the space groups; 7.2.1 Maximal translationengleiche subgroups; 7.2.2 Maximal non-isomorphic klassengleiche subgroups; 7.2.3 Maximal isomorphic subgroups; 7.3 Minimal supergroups of the space groups; 7.4 Layer groups and rod groups; Exercises; 8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures; 8.1 Conjugate subgroups of space groups; 8.2 Normalizers of space groups. | |
650 | 0 | |a Crystals |x Structure. | |
650 | 0 | |a Symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh85131443 | |
650 | 6 | |a Cristaux |x Structure. | |
650 | 6 | |a Symétrie (Physique) | |
650 | 7 | |a SCIENCE |x Physics |x Crystallography. |2 bisacsh | |
650 | 7 | |a Crystals |x Structure |2 fast | |
650 | 7 | |a Symmetry (Physics) |2 fast | |
776 | 0 | 8 | |i Print version: |a Müller, Ulrich, 1940 July 6- |t Symmetry relationships between crystal structures. |d Oxford : Oxford University Press, 2013 |z 9780199669950 |w (DLC) 2012554445 |
830 | 0 | |a International Union of Crystallography texts on crystallography ; |v 18. |0 http://id.loc.gov/authorities/names/n88500222 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=600617 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 25731971 | ||
938 | |a ebrary |b EBRY |n ebr10722741 | ||
938 | |a EBSCOhost |b EBSC |n 600617 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25731971 | ||
938 | |a YBP Library Services |b YANK |n 10803595 | ||
938 | |a YBP Library Services |b YANK |n 10794727 | ||
938 | |a YBP Library Services |b YANK |n 11260554 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7033278 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000168204 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn850179696 |
---|---|
_version_ | 1816882236801155072 |
adam_text | |
any_adam_object | |
author | Müller, Ulrich, 1940 July 6- |
author_GND | http://id.loc.gov/authorities/names/n92065173 |
author_facet | Müller, Ulrich, 1940 July 6- |
author_role | |
author_sort | Müller, Ulrich, 1940 July 6- |
author_variant | u m um |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD921 |
callnumber-raw | QD921 |
callnumber-search | QD921 |
callnumber-sort | QD 3921 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright Page; Dedication; Preface; Contents; List of symbols; 1.1 The symmetry principle in crystal chemistry; 1.2 Introductory examples; 1 Introduction; I Crystallographic Foundations; 2 Basics of crystallography, part 1; 2.1 Introductory remarks; 2.2 Crystals and lattices; 2.3 Appropriate coordinate systems, crystal coordinates; 2.4 Lattice directions, net planes, and reciprocal lattice; 2.5 Calculation of distances and angles; 3 Mappings; 3.1 Mappings in crystallography; 3.1.1 An example; 3.1.2 Symmetry operations; 3.2 Affine mappings. 3.3 Application of (n + 1) × (n + 1) matrices3.4 Affine mappings of vectors; 3.5 Isometries; 3.6 Types of isometries; 3.7 Changes of the coordinate system; 3.7.1 Origin shift; 3.7.2 Basis change; 3.7.3 General transformation of the coordinate system; 3.7.4 The effect of coordinate transformations on mappings; 3.7.5 Several consecutive transformations of the coordinate system; 3.7.6 Calculation of origin shifts from coordinate transformations; 3.7.7 Transformation of further crystallographic quantities; Exercises; 4 Basics of crystallography, part 2. 4.1 The description of crystal symmetry in International Tables A: Positions4.2 Crystallographic symmetry operations; 4.3 Geometric interpretation of the matrix-column pair (W, w) of a crystallographic symmetry operation; 4.4 Derivation of the matrix-column pair of an isometry; Exercises; 5 Group theory; 5.1 Two examples of groups; 5.2 Basics of group theory; 5.3 Coset decomposition of a group; 5.4 Conjugation; 5.5 Factor groups and homomorphisms; 5.6 Action of a group on a set; Exercises; 6 Basics of crystallography, part 3; 6.1 Space groups and point groups; 6.1.1 Molecular symmetry. 6.1.2 The space group and its point group6.1.3 Classification of the space groups; 6.2 The lattice of a space group; 6.3 Space-group symbols; 6.3.1 Hermann-Mauguin symbols; 6.3.2 Schoenflies symbols; 6.4 Description of space-group symmetry in International Tables A; 6.4.1 Diagrams of the symmetry elements; 6.4.2 Lists of the Wyckoff positions; 6.4.3 Symmetry operations of the general position; 6.4.4 Diagrams of the general positions; 6.5 General and special positions of the space groups; 6.5.1 The general position of a space group; 6.5.2 The special positions of a space group. 6.6 The difference between space group and space-group typeExercises; 7 Subgroups and supergroups of point and space groups; 7.1 Subgroups of the point groups of molecules; 7.2 Subgroups of the space groups; 7.2.1 Maximal translationengleiche subgroups; 7.2.2 Maximal non-isomorphic klassengleiche subgroups; 7.2.3 Maximal isomorphic subgroups; 7.3 Minimal supergroups of the space groups; 7.4 Layer groups and rod groups; Exercises; 8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures; 8.1 Conjugate subgroups of space groups; 8.2 Normalizers of space groups. |
ctrlnum | (OCoLC)850179696 |
dewey-full | 548.81 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 548 - Crystallography |
dewey-raw | 548.81 |
dewey-search | 548.81 |
dewey-sort | 3548.81 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06279cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn850179696</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130623s2013 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OTZ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YOU</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">BTN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AZU</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">STBDS</subfield><subfield code="d">IL4I4</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">850162150</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191648793</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191648795</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191648809</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191648809</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299684829</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299684823</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199669950</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199669953</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850179696</subfield><subfield code="z">(OCoLC)850162150</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD921</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">548.81</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Ulrich,</subfield><subfield code="d">1940 July 6-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJv8KWXhk9JFcgxBMvvvHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92065173</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry relationships between crystal structures :</subfield><subfield code="b">applications of crystallographic group theory in crystal chemistry /</subfield><subfield code="c">Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IUCr texts on crystallography ;</subfield><subfield code="v">18</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This text presents the basic information needed to understand and to organise the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright Page; Dedication; Preface; Contents; List of symbols; 1.1 The symmetry principle in crystal chemistry; 1.2 Introductory examples; 1 Introduction; I Crystallographic Foundations; 2 Basics of crystallography, part 1; 2.1 Introductory remarks; 2.2 Crystals and lattices; 2.3 Appropriate coordinate systems, crystal coordinates; 2.4 Lattice directions, net planes, and reciprocal lattice; 2.5 Calculation of distances and angles; 3 Mappings; 3.1 Mappings in crystallography; 3.1.1 An example; 3.1.2 Symmetry operations; 3.2 Affine mappings.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Application of (n + 1) × (n + 1) matrices3.4 Affine mappings of vectors; 3.5 Isometries; 3.6 Types of isometries; 3.7 Changes of the coordinate system; 3.7.1 Origin shift; 3.7.2 Basis change; 3.7.3 General transformation of the coordinate system; 3.7.4 The effect of coordinate transformations on mappings; 3.7.5 Several consecutive transformations of the coordinate system; 3.7.6 Calculation of origin shifts from coordinate transformations; 3.7.7 Transformation of further crystallographic quantities; Exercises; 4 Basics of crystallography, part 2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 The description of crystal symmetry in International Tables A: Positions4.2 Crystallographic symmetry operations; 4.3 Geometric interpretation of the matrix-column pair (W, w) of a crystallographic symmetry operation; 4.4 Derivation of the matrix-column pair of an isometry; Exercises; 5 Group theory; 5.1 Two examples of groups; 5.2 Basics of group theory; 5.3 Coset decomposition of a group; 5.4 Conjugation; 5.5 Factor groups and homomorphisms; 5.6 Action of a group on a set; Exercises; 6 Basics of crystallography, part 3; 6.1 Space groups and point groups; 6.1.1 Molecular symmetry.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1.2 The space group and its point group6.1.3 Classification of the space groups; 6.2 The lattice of a space group; 6.3 Space-group symbols; 6.3.1 Hermann-Mauguin symbols; 6.3.2 Schoenflies symbols; 6.4 Description of space-group symmetry in International Tables A; 6.4.1 Diagrams of the symmetry elements; 6.4.2 Lists of the Wyckoff positions; 6.4.3 Symmetry operations of the general position; 6.4.4 Diagrams of the general positions; 6.5 General and special positions of the space groups; 6.5.1 The general position of a space group; 6.5.2 The special positions of a space group.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.6 The difference between space group and space-group typeExercises; 7 Subgroups and supergroups of point and space groups; 7.1 Subgroups of the point groups of molecules; 7.2 Subgroups of the space groups; 7.2.1 Maximal translationengleiche subgroups; 7.2.2 Maximal non-isomorphic klassengleiche subgroups; 7.2.3 Maximal isomorphic subgroups; 7.3 Minimal supergroups of the space groups; 7.4 Layer groups and rod groups; Exercises; 8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures; 8.1 Conjugate subgroups of space groups; 8.2 Normalizers of space groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Crystals</subfield><subfield code="x">Structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131443</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Cristaux</subfield><subfield code="x">Structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Crystallography.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crystals</subfield><subfield code="x">Structure</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Müller, Ulrich, 1940 July 6-</subfield><subfield code="t">Symmetry relationships between crystal structures.</subfield><subfield code="d">Oxford : Oxford University Press, 2013</subfield><subfield code="z">9780199669950</subfield><subfield code="w">(DLC) 2012554445</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">International Union of Crystallography texts on crystallography ;</subfield><subfield code="v">18.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88500222</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=600617</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25731971</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10722741</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">600617</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25731971</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10803595</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10794727</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11260554</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7033278</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000168204</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn850179696 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:24Z |
institution | BVB |
isbn | 9780191648793 0191648795 0191648809 9780191648809 9781299684829 1299684823 |
language | English |
oclc_num | 850179696 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press, |
record_format | marc |
series | International Union of Crystallography texts on crystallography ; |
series2 | IUCr texts on crystallography ; |
spelling | Müller, Ulrich, 1940 July 6- https://id.oclc.org/worldcat/entity/E39PBJv8KWXhk9JFcgxBMvvvHC http://id.loc.gov/authorities/names/n92065173 Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen. Oxford : Oxford University Press, 2013. 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier IUCr texts on crystallography ; 18 Includes bibliographical references and index. Print version record. This text presents the basic information needed to understand and to organise the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals. Cover; Title Page; Copyright Page; Dedication; Preface; Contents; List of symbols; 1.1 The symmetry principle in crystal chemistry; 1.2 Introductory examples; 1 Introduction; I Crystallographic Foundations; 2 Basics of crystallography, part 1; 2.1 Introductory remarks; 2.2 Crystals and lattices; 2.3 Appropriate coordinate systems, crystal coordinates; 2.4 Lattice directions, net planes, and reciprocal lattice; 2.5 Calculation of distances and angles; 3 Mappings; 3.1 Mappings in crystallography; 3.1.1 An example; 3.1.2 Symmetry operations; 3.2 Affine mappings. 3.3 Application of (n + 1) × (n + 1) matrices3.4 Affine mappings of vectors; 3.5 Isometries; 3.6 Types of isometries; 3.7 Changes of the coordinate system; 3.7.1 Origin shift; 3.7.2 Basis change; 3.7.3 General transformation of the coordinate system; 3.7.4 The effect of coordinate transformations on mappings; 3.7.5 Several consecutive transformations of the coordinate system; 3.7.6 Calculation of origin shifts from coordinate transformations; 3.7.7 Transformation of further crystallographic quantities; Exercises; 4 Basics of crystallography, part 2. 4.1 The description of crystal symmetry in International Tables A: Positions4.2 Crystallographic symmetry operations; 4.3 Geometric interpretation of the matrix-column pair (W, w) of a crystallographic symmetry operation; 4.4 Derivation of the matrix-column pair of an isometry; Exercises; 5 Group theory; 5.1 Two examples of groups; 5.2 Basics of group theory; 5.3 Coset decomposition of a group; 5.4 Conjugation; 5.5 Factor groups and homomorphisms; 5.6 Action of a group on a set; Exercises; 6 Basics of crystallography, part 3; 6.1 Space groups and point groups; 6.1.1 Molecular symmetry. 6.1.2 The space group and its point group6.1.3 Classification of the space groups; 6.2 The lattice of a space group; 6.3 Space-group symbols; 6.3.1 Hermann-Mauguin symbols; 6.3.2 Schoenflies symbols; 6.4 Description of space-group symmetry in International Tables A; 6.4.1 Diagrams of the symmetry elements; 6.4.2 Lists of the Wyckoff positions; 6.4.3 Symmetry operations of the general position; 6.4.4 Diagrams of the general positions; 6.5 General and special positions of the space groups; 6.5.1 The general position of a space group; 6.5.2 The special positions of a space group. 6.6 The difference between space group and space-group typeExercises; 7 Subgroups and supergroups of point and space groups; 7.1 Subgroups of the point groups of molecules; 7.2 Subgroups of the space groups; 7.2.1 Maximal translationengleiche subgroups; 7.2.2 Maximal non-isomorphic klassengleiche subgroups; 7.2.3 Maximal isomorphic subgroups; 7.3 Minimal supergroups of the space groups; 7.4 Layer groups and rod groups; Exercises; 8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures; 8.1 Conjugate subgroups of space groups; 8.2 Normalizers of space groups. Crystals Structure. Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Cristaux Structure. Symétrie (Physique) SCIENCE Physics Crystallography. bisacsh Crystals Structure fast Symmetry (Physics) fast Print version: Müller, Ulrich, 1940 July 6- Symmetry relationships between crystal structures. Oxford : Oxford University Press, 2013 9780199669950 (DLC) 2012554445 International Union of Crystallography texts on crystallography ; 18. http://id.loc.gov/authorities/names/n88500222 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=600617 Volltext |
spellingShingle | Müller, Ulrich, 1940 July 6- Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / International Union of Crystallography texts on crystallography ; Cover; Title Page; Copyright Page; Dedication; Preface; Contents; List of symbols; 1.1 The symmetry principle in crystal chemistry; 1.2 Introductory examples; 1 Introduction; I Crystallographic Foundations; 2 Basics of crystallography, part 1; 2.1 Introductory remarks; 2.2 Crystals and lattices; 2.3 Appropriate coordinate systems, crystal coordinates; 2.4 Lattice directions, net planes, and reciprocal lattice; 2.5 Calculation of distances and angles; 3 Mappings; 3.1 Mappings in crystallography; 3.1.1 An example; 3.1.2 Symmetry operations; 3.2 Affine mappings. 3.3 Application of (n + 1) × (n + 1) matrices3.4 Affine mappings of vectors; 3.5 Isometries; 3.6 Types of isometries; 3.7 Changes of the coordinate system; 3.7.1 Origin shift; 3.7.2 Basis change; 3.7.3 General transformation of the coordinate system; 3.7.4 The effect of coordinate transformations on mappings; 3.7.5 Several consecutive transformations of the coordinate system; 3.7.6 Calculation of origin shifts from coordinate transformations; 3.7.7 Transformation of further crystallographic quantities; Exercises; 4 Basics of crystallography, part 2. 4.1 The description of crystal symmetry in International Tables A: Positions4.2 Crystallographic symmetry operations; 4.3 Geometric interpretation of the matrix-column pair (W, w) of a crystallographic symmetry operation; 4.4 Derivation of the matrix-column pair of an isometry; Exercises; 5 Group theory; 5.1 Two examples of groups; 5.2 Basics of group theory; 5.3 Coset decomposition of a group; 5.4 Conjugation; 5.5 Factor groups and homomorphisms; 5.6 Action of a group on a set; Exercises; 6 Basics of crystallography, part 3; 6.1 Space groups and point groups; 6.1.1 Molecular symmetry. 6.1.2 The space group and its point group6.1.3 Classification of the space groups; 6.2 The lattice of a space group; 6.3 Space-group symbols; 6.3.1 Hermann-Mauguin symbols; 6.3.2 Schoenflies symbols; 6.4 Description of space-group symmetry in International Tables A; 6.4.1 Diagrams of the symmetry elements; 6.4.2 Lists of the Wyckoff positions; 6.4.3 Symmetry operations of the general position; 6.4.4 Diagrams of the general positions; 6.5 General and special positions of the space groups; 6.5.1 The general position of a space group; 6.5.2 The special positions of a space group. 6.6 The difference between space group and space-group typeExercises; 7 Subgroups and supergroups of point and space groups; 7.1 Subgroups of the point groups of molecules; 7.2 Subgroups of the space groups; 7.2.1 Maximal translationengleiche subgroups; 7.2.2 Maximal non-isomorphic klassengleiche subgroups; 7.2.3 Maximal isomorphic subgroups; 7.3 Minimal supergroups of the space groups; 7.4 Layer groups and rod groups; Exercises; 8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures; 8.1 Conjugate subgroups of space groups; 8.2 Normalizers of space groups. Crystals Structure. Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Cristaux Structure. Symétrie (Physique) SCIENCE Physics Crystallography. bisacsh Crystals Structure fast Symmetry (Physics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85131443 |
title | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / |
title_auth | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / |
title_exact_search | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / |
title_full | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen. |
title_fullStr | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen. |
title_full_unstemmed | Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry / Ulrich Müller ; with texts adapted from Hans Wondratschek and Hartmut Bärnighausen. |
title_short | Symmetry relationships between crystal structures : |
title_sort | symmetry relationships between crystal structures applications of crystallographic group theory in crystal chemistry |
title_sub | applications of crystallographic group theory in crystal chemistry / |
topic | Crystals Structure. Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Cristaux Structure. Symétrie (Physique) SCIENCE Physics Crystallography. bisacsh Crystals Structure fast Symmetry (Physics) fast |
topic_facet | Crystals Structure. Symmetry (Physics) Cristaux Structure. Symétrie (Physique) SCIENCE Physics Crystallography. Crystals Structure |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=600617 |
work_keys_str_mv | AT mullerulrich symmetryrelationshipsbetweencrystalstructuresapplicationsofcrystallographicgrouptheoryincrystalchemistry |