Sub-Riemannian Geometry :: General Theory and Examples.
A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2009.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach. |
Beschreibung: | 9.6 Volume Element on Heisenberg Manifolds. |
Beschreibung: | 1 online resource (384 pages) |
Bibliographie: | Includes bibliographical references (pages 363-366) and index. |
ISBN: | 9781107096097 110709609X 9781107089839 1107089832 9781139195966 1139195964 1107104149 9781107104143 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn850148893 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 130625s2009 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d OCLCO |d DEBSZ |d EUX |d OCLCO |d OCLCQ |d OCLCO |d OCLCF |d N$T |d CAMBR |d YDXCP |d IDEBK |d OCLCQ |d UAB |d OCLCQ |d AU@ |d UKAHL |d OCLCQ |d K6U |d INARC |d LUN |d MM9 |d OCLCQ |d OCLCO |d INTCL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBA961067 |2 bnb | ||
019 | |a 843760933 |a 847526702 |a 1117882307 |a 1151344514 |a 1167481742 |a 1171150815 |a 1180938876 | ||
020 | |a 9781107096097 | ||
020 | |a 110709609X | ||
020 | |a 9781107089839 |q (electronic bk.) | ||
020 | |a 1107089832 |q (electronic bk.) | ||
020 | |a 9781139195966 |q (electronic bk.) | ||
020 | |a 1139195964 |q (electronic bk.) | ||
020 | |a 1107104149 |q (e-book) | ||
020 | |a 9781107104143 |q (e-book) | ||
020 | |z 9780521897303 | ||
020 | |z 0521897300 | ||
035 | |a (OCoLC)850148893 |z (OCoLC)843760933 |z (OCoLC)847526702 |z (OCoLC)1117882307 |z (OCoLC)1151344514 |z (OCoLC)1167481742 |z (OCoLC)1171150815 |z (OCoLC)1180938876 | ||
050 | 4 | |a QA649 .C27 2009 | |
072 | 7 | |a MAT |x 012020 |2 bisacsh | |
082 | 7 | |a 516.3/73 |a 516.373 | |
084 | |a 31.52 |2 bcl | ||
084 | |a SK 370 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Calin, Ovidiu. | |
245 | 1 | 0 | |a Sub-Riemannian Geometry : |b General Theory and Examples. |
260 | |a Cambridge : |b Cambridge University Press, |c 2009. | ||
300 | |a 1 online resource (384 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of Mathematics and its Applications ; |v v. 126 | |
505 | 0 | |a Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Part I General Theory; 1 Introductory Chapter; 1.1 Differentiable Manifolds; 1.2 Submanifolds; 1.3 Distributions; 1.4 Integral Curves of a Vector Field; 1.5 Independent One-Forms; 1.6 Distributions Defined by One-Forms; 1.7 Integrability of One-Forms; 1.8 Elliptic Functions; 1.9 Exterior Differential Systems; 1.10 Formulas Involving Lie Derivative; 1.11 Pfaff Systems; 1.12 Characteristic Vector Fields; 1.13 Lagrange-Charpit Method; 1.14 Eiconal Equation on the Euclidean Space; 1.15 Hamilton-Jacobi Equation on Rn. | |
505 | 8 | |a 2 Basic Properties2.1 Sub-Riemannian Manifolds; 2.2 The Existence of Sub-Riemannian Metrics; 2.3 Systems of Orthonormal Vector Fields at a Point; 2.4 Bracket-Generating Distributions; 2.5 Non-Bracket-Generating Distributions; 2.6 Cyclic Bracket Structures; 2.7 Strong Bracket-Generating Condition; 2.8 Nilpotent Distributions; 2.9 The Horizontal Gradient; 2.10 The Intrinsic and Extrinsic Ideals; 2.11 The Induced Connection and Curvature Forms; 2.12 The Iterated Extrinsic Ideals; 3 Horizontal Connectivity; 3.1 Teleman's Theorem; 3.2 Carathéodory's Theorem; 3.3 Thermodynamical Interpretation. | |
505 | 8 | |a 3.4 A Global Nonconnectivity Example3.5 Chow's Theorem; 4 The Hamilton-Jacobi Theory; 4.1 The Hamilton-Jacobi Equation; 4.2 Length-Minimizing Horizontal Curves; 4.3 An Example: The Heisenberg Distribution; 4.4 Sub-Riemannian Eiconal Equation; 4.5 Solving the Hamilton-Jacobi Equation; 5 The Hamiltonian Formalism; 5.1 The Hamiltonian Function; 5.2 Normal Geodesics and Their Properties; 5.3 The Nonholonomic Constraint; 5.4 The Covariant Sub-Riemannian Metric; 5.5 Covariant and Contravariant Sub-Riemannian Metrics; 5.6 The Acceleration Along a Horizontal Curve. | |
505 | 8 | |a 5.7 Horizontal and Cartesian Components5.8 Normal Geodesics as Length-Minimizing Curves; 5.9 Eigenvectors of the Contravariant Metric; 5.10 Poisson Formalism; 5.11 Invariants of a Distribution; 6 Lagrangian Formalism; 6.1 Lagrange Multipliers; 6.2 Singular Minimizers; 6.3 Regular Implies Normal; 6.4 The Euler-Lagrange Equations; 7 Connections on Sub-Riemannian Manifolds; 7.1 The Horizontal Connection; 7.2 The Torsion of the Horizontal Connection; 7.3 Horizontal Divergence; 7.4 Connections on Sub-Riemannian Manifolds; 7.5 Parallel Transport Along Horizontal Curves. | |
505 | 8 | |a 7.6 The Curvature of a Connection7.7 The Induced Curvature; 7.8 The Metrical Connection; 7.9 The Flat Connection; 8 Gauss' Theory of Sub-Riemannian Manifolds; 8.1 The Second Fundamental Form; 8.2 The Adapted Connection; 8.3 The Adapted Weingarten Map; 8.4 The Variational Problem; 8.5 The Case of the Sphere S3; Part II Examples and Applications; 9 Heisenberg Manifolds; 9.1 The Quantum Origins of the Heisenberg Group; 9.2 Basic Definitions and Properties; 9.3 Determinants of Skew-Symmetric Matrices; 9.4 Heisenberg Manifolds as Contact Manifolds; 9.5 The Curvature Two-Form. | |
500 | |a 9.6 Volume Element on Heisenberg Manifolds. | ||
520 | |a A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 363-366) and index. | ||
650 | 0 | |a Geodesics (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85053967 | |
650 | 0 | |a Geometry, Riemannian. |0 http://id.loc.gov/authorities/subjects/sh85054159 | |
650 | 0 | |a Riemannian manifolds. |0 http://id.loc.gov/authorities/subjects/sh85114045 | |
650 | 0 | |a Submanifolds. |0 http://id.loc.gov/authorities/subjects/sh85129484 | |
650 | 6 | |a Géodésiques (Mathématiques) | |
650 | 6 | |a Géométrie de Riemann. | |
650 | 6 | |a Variétés de Riemann. | |
650 | 6 | |a Sous-variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Geodesics (Mathematics) |2 fast | |
650 | 7 | |a Geometry, Riemannian |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
650 | 7 | |a Submanifolds |2 fast | |
700 | 1 | |a Chang, Der-Chen. | |
758 | |i has work: |a Sub-Riemannian geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFtFpQdhXx64cptvhCTJpd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Calin, Ovidiu. |t Sub-Riemannian Geometry : General Theory and Examples. |d Cambridge : Cambridge University Press, ©2009 |z 9780521897303 |
830 | 0 | |a Encyclopedia of mathematics and its applications. |0 http://id.loc.gov/authorities/names/n42010632 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569394 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569394 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25052676 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37561664 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385551 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1178995 | ||
938 | |a EBSCOhost |b EBSC |n 569394 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25780872 | ||
938 | |a Internet Archive |b INAR |n subriemanniangeo0000cali | ||
938 | |a YBP Library Services |b YANK |n 10705854 | ||
938 | |a YBP Library Services |b YANK |n 10759680 | ||
938 | |a YBP Library Services |b YANK |n 10760959 | ||
938 | |a YBP Library Services |b YANK |n 10794867 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn850148893 |
---|---|
_version_ | 1829094962897092608 |
adam_text | |
any_adam_object | |
author | Calin, Ovidiu |
author2 | Chang, Der-Chen |
author2_role | |
author2_variant | d c c dcc |
author_facet | Calin, Ovidiu Chang, Der-Chen |
author_role | |
author_sort | Calin, Ovidiu |
author_variant | o c oc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .C27 2009 |
callnumber-search | QA649 .C27 2009 |
callnumber-sort | QA 3649 C27 42009 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
collection | ZDB-4-EBA |
contents | Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Part I General Theory; 1 Introductory Chapter; 1.1 Differentiable Manifolds; 1.2 Submanifolds; 1.3 Distributions; 1.4 Integral Curves of a Vector Field; 1.5 Independent One-Forms; 1.6 Distributions Defined by One-Forms; 1.7 Integrability of One-Forms; 1.8 Elliptic Functions; 1.9 Exterior Differential Systems; 1.10 Formulas Involving Lie Derivative; 1.11 Pfaff Systems; 1.12 Characteristic Vector Fields; 1.13 Lagrange-Charpit Method; 1.14 Eiconal Equation on the Euclidean Space; 1.15 Hamilton-Jacobi Equation on Rn. 2 Basic Properties2.1 Sub-Riemannian Manifolds; 2.2 The Existence of Sub-Riemannian Metrics; 2.3 Systems of Orthonormal Vector Fields at a Point; 2.4 Bracket-Generating Distributions; 2.5 Non-Bracket-Generating Distributions; 2.6 Cyclic Bracket Structures; 2.7 Strong Bracket-Generating Condition; 2.8 Nilpotent Distributions; 2.9 The Horizontal Gradient; 2.10 The Intrinsic and Extrinsic Ideals; 2.11 The Induced Connection and Curvature Forms; 2.12 The Iterated Extrinsic Ideals; 3 Horizontal Connectivity; 3.1 Teleman's Theorem; 3.2 Carathéodory's Theorem; 3.3 Thermodynamical Interpretation. 3.4 A Global Nonconnectivity Example3.5 Chow's Theorem; 4 The Hamilton-Jacobi Theory; 4.1 The Hamilton-Jacobi Equation; 4.2 Length-Minimizing Horizontal Curves; 4.3 An Example: The Heisenberg Distribution; 4.4 Sub-Riemannian Eiconal Equation; 4.5 Solving the Hamilton-Jacobi Equation; 5 The Hamiltonian Formalism; 5.1 The Hamiltonian Function; 5.2 Normal Geodesics and Their Properties; 5.3 The Nonholonomic Constraint; 5.4 The Covariant Sub-Riemannian Metric; 5.5 Covariant and Contravariant Sub-Riemannian Metrics; 5.6 The Acceleration Along a Horizontal Curve. 5.7 Horizontal and Cartesian Components5.8 Normal Geodesics as Length-Minimizing Curves; 5.9 Eigenvectors of the Contravariant Metric; 5.10 Poisson Formalism; 5.11 Invariants of a Distribution; 6 Lagrangian Formalism; 6.1 Lagrange Multipliers; 6.2 Singular Minimizers; 6.3 Regular Implies Normal; 6.4 The Euler-Lagrange Equations; 7 Connections on Sub-Riemannian Manifolds; 7.1 The Horizontal Connection; 7.2 The Torsion of the Horizontal Connection; 7.3 Horizontal Divergence; 7.4 Connections on Sub-Riemannian Manifolds; 7.5 Parallel Transport Along Horizontal Curves. 7.6 The Curvature of a Connection7.7 The Induced Curvature; 7.8 The Metrical Connection; 7.9 The Flat Connection; 8 Gauss' Theory of Sub-Riemannian Manifolds; 8.1 The Second Fundamental Form; 8.2 The Adapted Connection; 8.3 The Adapted Weingarten Map; 8.4 The Variational Problem; 8.5 The Case of the Sphere S3; Part II Examples and Applications; 9 Heisenberg Manifolds; 9.1 The Quantum Origins of the Heisenberg Group; 9.2 Basic Definitions and Properties; 9.3 Determinants of Skew-Symmetric Matrices; 9.4 Heisenberg Manifolds as Contact Manifolds; 9.5 The Curvature Two-Form. |
ctrlnum | (OCoLC)850148893 |
dewey-full | 516.3/73 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 516.373 |
dewey-search | 516.3/73 516.373 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07028cam a2200901Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn850148893</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">130625s2009 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">EUX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">INARC</subfield><subfield code="d">LUN</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INTCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA961067</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">843760933</subfield><subfield code="a">847526702</subfield><subfield code="a">1117882307</subfield><subfield code="a">1151344514</subfield><subfield code="a">1167481742</subfield><subfield code="a">1171150815</subfield><subfield code="a">1180938876</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107096097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110709609X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089839</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089832</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139195966</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139195964</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107104149</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107104143</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521897303</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521897300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850148893</subfield><subfield code="z">(OCoLC)843760933</subfield><subfield code="z">(OCoLC)847526702</subfield><subfield code="z">(OCoLC)1117882307</subfield><subfield code="z">(OCoLC)1151344514</subfield><subfield code="z">(OCoLC)1167481742</subfield><subfield code="z">(OCoLC)1171150815</subfield><subfield code="z">(OCoLC)1180938876</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649 .C27 2009</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="a">516.373</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.52</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Calin, Ovidiu.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sub-Riemannian Geometry :</subfield><subfield code="b">General Theory and Examples.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (384 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of Mathematics and its Applications ;</subfield><subfield code="v">v. 126</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Part I General Theory; 1 Introductory Chapter; 1.1 Differentiable Manifolds; 1.2 Submanifolds; 1.3 Distributions; 1.4 Integral Curves of a Vector Field; 1.5 Independent One-Forms; 1.6 Distributions Defined by One-Forms; 1.7 Integrability of One-Forms; 1.8 Elliptic Functions; 1.9 Exterior Differential Systems; 1.10 Formulas Involving Lie Derivative; 1.11 Pfaff Systems; 1.12 Characteristic Vector Fields; 1.13 Lagrange-Charpit Method; 1.14 Eiconal Equation on the Euclidean Space; 1.15 Hamilton-Jacobi Equation on Rn.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 Basic Properties2.1 Sub-Riemannian Manifolds; 2.2 The Existence of Sub-Riemannian Metrics; 2.3 Systems of Orthonormal Vector Fields at a Point; 2.4 Bracket-Generating Distributions; 2.5 Non-Bracket-Generating Distributions; 2.6 Cyclic Bracket Structures; 2.7 Strong Bracket-Generating Condition; 2.8 Nilpotent Distributions; 2.9 The Horizontal Gradient; 2.10 The Intrinsic and Extrinsic Ideals; 2.11 The Induced Connection and Curvature Forms; 2.12 The Iterated Extrinsic Ideals; 3 Horizontal Connectivity; 3.1 Teleman's Theorem; 3.2 Carathéodory's Theorem; 3.3 Thermodynamical Interpretation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 A Global Nonconnectivity Example3.5 Chow's Theorem; 4 The Hamilton-Jacobi Theory; 4.1 The Hamilton-Jacobi Equation; 4.2 Length-Minimizing Horizontal Curves; 4.3 An Example: The Heisenberg Distribution; 4.4 Sub-Riemannian Eiconal Equation; 4.5 Solving the Hamilton-Jacobi Equation; 5 The Hamiltonian Formalism; 5.1 The Hamiltonian Function; 5.2 Normal Geodesics and Their Properties; 5.3 The Nonholonomic Constraint; 5.4 The Covariant Sub-Riemannian Metric; 5.5 Covariant and Contravariant Sub-Riemannian Metrics; 5.6 The Acceleration Along a Horizontal Curve.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7 Horizontal and Cartesian Components5.8 Normal Geodesics as Length-Minimizing Curves; 5.9 Eigenvectors of the Contravariant Metric; 5.10 Poisson Formalism; 5.11 Invariants of a Distribution; 6 Lagrangian Formalism; 6.1 Lagrange Multipliers; 6.2 Singular Minimizers; 6.3 Regular Implies Normal; 6.4 The Euler-Lagrange Equations; 7 Connections on Sub-Riemannian Manifolds; 7.1 The Horizontal Connection; 7.2 The Torsion of the Horizontal Connection; 7.3 Horizontal Divergence; 7.4 Connections on Sub-Riemannian Manifolds; 7.5 Parallel Transport Along Horizontal Curves.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.6 The Curvature of a Connection7.7 The Induced Curvature; 7.8 The Metrical Connection; 7.9 The Flat Connection; 8 Gauss' Theory of Sub-Riemannian Manifolds; 8.1 The Second Fundamental Form; 8.2 The Adapted Connection; 8.3 The Adapted Weingarten Map; 8.4 The Variational Problem; 8.5 The Case of the Sphere S3; Part II Examples and Applications; 9 Heisenberg Manifolds; 9.1 The Quantum Origins of the Heisenberg Group; 9.2 Basic Definitions and Properties; 9.3 Determinants of Skew-Symmetric Matrices; 9.4 Heisenberg Manifolds as Contact Manifolds; 9.5 The Curvature Two-Form.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.6 Volume Element on Heisenberg Manifolds.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 363-366) and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geodesics (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053967</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Riemannian.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054159</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemannian manifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114045</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Submanifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85129484</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géodésiques (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sous-variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geodesics (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Riemannian</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Submanifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Der-Chen.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Sub-Riemannian geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFtFpQdhXx64cptvhCTJpd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Calin, Ovidiu.</subfield><subfield code="t">Sub-Riemannian Geometry : General Theory and Examples.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2009</subfield><subfield code="z">9780521897303</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569394</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569394</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25052676</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37561664</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1178995</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569394</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25780872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">subriemanniangeo0000cali</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10705854</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10759680</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10760959</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10794867</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn850148893 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:41:28Z |
institution | BVB |
isbn | 9781107096097 110709609X 9781107089839 1107089832 9781139195966 1139195964 1107104149 9781107104143 |
language | English |
oclc_num | 850148893 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (384 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications. |
series2 | Encyclopedia of Mathematics and its Applications ; |
spelling | Calin, Ovidiu. Sub-Riemannian Geometry : General Theory and Examples. Cambridge : Cambridge University Press, 2009. 1 online resource (384 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of Mathematics and its Applications ; v. 126 Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Part I General Theory; 1 Introductory Chapter; 1.1 Differentiable Manifolds; 1.2 Submanifolds; 1.3 Distributions; 1.4 Integral Curves of a Vector Field; 1.5 Independent One-Forms; 1.6 Distributions Defined by One-Forms; 1.7 Integrability of One-Forms; 1.8 Elliptic Functions; 1.9 Exterior Differential Systems; 1.10 Formulas Involving Lie Derivative; 1.11 Pfaff Systems; 1.12 Characteristic Vector Fields; 1.13 Lagrange-Charpit Method; 1.14 Eiconal Equation on the Euclidean Space; 1.15 Hamilton-Jacobi Equation on Rn. 2 Basic Properties2.1 Sub-Riemannian Manifolds; 2.2 The Existence of Sub-Riemannian Metrics; 2.3 Systems of Orthonormal Vector Fields at a Point; 2.4 Bracket-Generating Distributions; 2.5 Non-Bracket-Generating Distributions; 2.6 Cyclic Bracket Structures; 2.7 Strong Bracket-Generating Condition; 2.8 Nilpotent Distributions; 2.9 The Horizontal Gradient; 2.10 The Intrinsic and Extrinsic Ideals; 2.11 The Induced Connection and Curvature Forms; 2.12 The Iterated Extrinsic Ideals; 3 Horizontal Connectivity; 3.1 Teleman's Theorem; 3.2 Carathéodory's Theorem; 3.3 Thermodynamical Interpretation. 3.4 A Global Nonconnectivity Example3.5 Chow's Theorem; 4 The Hamilton-Jacobi Theory; 4.1 The Hamilton-Jacobi Equation; 4.2 Length-Minimizing Horizontal Curves; 4.3 An Example: The Heisenberg Distribution; 4.4 Sub-Riemannian Eiconal Equation; 4.5 Solving the Hamilton-Jacobi Equation; 5 The Hamiltonian Formalism; 5.1 The Hamiltonian Function; 5.2 Normal Geodesics and Their Properties; 5.3 The Nonholonomic Constraint; 5.4 The Covariant Sub-Riemannian Metric; 5.5 Covariant and Contravariant Sub-Riemannian Metrics; 5.6 The Acceleration Along a Horizontal Curve. 5.7 Horizontal and Cartesian Components5.8 Normal Geodesics as Length-Minimizing Curves; 5.9 Eigenvectors of the Contravariant Metric; 5.10 Poisson Formalism; 5.11 Invariants of a Distribution; 6 Lagrangian Formalism; 6.1 Lagrange Multipliers; 6.2 Singular Minimizers; 6.3 Regular Implies Normal; 6.4 The Euler-Lagrange Equations; 7 Connections on Sub-Riemannian Manifolds; 7.1 The Horizontal Connection; 7.2 The Torsion of the Horizontal Connection; 7.3 Horizontal Divergence; 7.4 Connections on Sub-Riemannian Manifolds; 7.5 Parallel Transport Along Horizontal Curves. 7.6 The Curvature of a Connection7.7 The Induced Curvature; 7.8 The Metrical Connection; 7.9 The Flat Connection; 8 Gauss' Theory of Sub-Riemannian Manifolds; 8.1 The Second Fundamental Form; 8.2 The Adapted Connection; 8.3 The Adapted Weingarten Map; 8.4 The Variational Problem; 8.5 The Case of the Sphere S3; Part II Examples and Applications; 9 Heisenberg Manifolds; 9.1 The Quantum Origins of the Heisenberg Group; 9.2 Basic Definitions and Properties; 9.3 Determinants of Skew-Symmetric Matrices; 9.4 Heisenberg Manifolds as Contact Manifolds; 9.5 The Curvature Two-Form. 9.6 Volume Element on Heisenberg Manifolds. A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach. Print version record. Includes bibliographical references (pages 363-366) and index. Geodesics (Mathematics) http://id.loc.gov/authorities/subjects/sh85053967 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Submanifolds. http://id.loc.gov/authorities/subjects/sh85129484 Géodésiques (Mathématiques) Géométrie de Riemann. Variétés de Riemann. Sous-variétés (Mathématiques) MATHEMATICS Geometry Analytic. bisacsh Geodesics (Mathematics) fast Geometry, Riemannian fast Riemannian manifolds fast Submanifolds fast Chang, Der-Chen. has work: Sub-Riemannian geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFtFpQdhXx64cptvhCTJpd https://id.oclc.org/worldcat/ontology/hasWork Print version: Calin, Ovidiu. Sub-Riemannian Geometry : General Theory and Examples. Cambridge : Cambridge University Press, ©2009 9780521897303 Encyclopedia of mathematics and its applications. http://id.loc.gov/authorities/names/n42010632 |
spellingShingle | Calin, Ovidiu Sub-Riemannian Geometry : General Theory and Examples. Encyclopedia of mathematics and its applications. Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Part I General Theory; 1 Introductory Chapter; 1.1 Differentiable Manifolds; 1.2 Submanifolds; 1.3 Distributions; 1.4 Integral Curves of a Vector Field; 1.5 Independent One-Forms; 1.6 Distributions Defined by One-Forms; 1.7 Integrability of One-Forms; 1.8 Elliptic Functions; 1.9 Exterior Differential Systems; 1.10 Formulas Involving Lie Derivative; 1.11 Pfaff Systems; 1.12 Characteristic Vector Fields; 1.13 Lagrange-Charpit Method; 1.14 Eiconal Equation on the Euclidean Space; 1.15 Hamilton-Jacobi Equation on Rn. 2 Basic Properties2.1 Sub-Riemannian Manifolds; 2.2 The Existence of Sub-Riemannian Metrics; 2.3 Systems of Orthonormal Vector Fields at a Point; 2.4 Bracket-Generating Distributions; 2.5 Non-Bracket-Generating Distributions; 2.6 Cyclic Bracket Structures; 2.7 Strong Bracket-Generating Condition; 2.8 Nilpotent Distributions; 2.9 The Horizontal Gradient; 2.10 The Intrinsic and Extrinsic Ideals; 2.11 The Induced Connection and Curvature Forms; 2.12 The Iterated Extrinsic Ideals; 3 Horizontal Connectivity; 3.1 Teleman's Theorem; 3.2 Carathéodory's Theorem; 3.3 Thermodynamical Interpretation. 3.4 A Global Nonconnectivity Example3.5 Chow's Theorem; 4 The Hamilton-Jacobi Theory; 4.1 The Hamilton-Jacobi Equation; 4.2 Length-Minimizing Horizontal Curves; 4.3 An Example: The Heisenberg Distribution; 4.4 Sub-Riemannian Eiconal Equation; 4.5 Solving the Hamilton-Jacobi Equation; 5 The Hamiltonian Formalism; 5.1 The Hamiltonian Function; 5.2 Normal Geodesics and Their Properties; 5.3 The Nonholonomic Constraint; 5.4 The Covariant Sub-Riemannian Metric; 5.5 Covariant and Contravariant Sub-Riemannian Metrics; 5.6 The Acceleration Along a Horizontal Curve. 5.7 Horizontal and Cartesian Components5.8 Normal Geodesics as Length-Minimizing Curves; 5.9 Eigenvectors of the Contravariant Metric; 5.10 Poisson Formalism; 5.11 Invariants of a Distribution; 6 Lagrangian Formalism; 6.1 Lagrange Multipliers; 6.2 Singular Minimizers; 6.3 Regular Implies Normal; 6.4 The Euler-Lagrange Equations; 7 Connections on Sub-Riemannian Manifolds; 7.1 The Horizontal Connection; 7.2 The Torsion of the Horizontal Connection; 7.3 Horizontal Divergence; 7.4 Connections on Sub-Riemannian Manifolds; 7.5 Parallel Transport Along Horizontal Curves. 7.6 The Curvature of a Connection7.7 The Induced Curvature; 7.8 The Metrical Connection; 7.9 The Flat Connection; 8 Gauss' Theory of Sub-Riemannian Manifolds; 8.1 The Second Fundamental Form; 8.2 The Adapted Connection; 8.3 The Adapted Weingarten Map; 8.4 The Variational Problem; 8.5 The Case of the Sphere S3; Part II Examples and Applications; 9 Heisenberg Manifolds; 9.1 The Quantum Origins of the Heisenberg Group; 9.2 Basic Definitions and Properties; 9.3 Determinants of Skew-Symmetric Matrices; 9.4 Heisenberg Manifolds as Contact Manifolds; 9.5 The Curvature Two-Form. Geodesics (Mathematics) http://id.loc.gov/authorities/subjects/sh85053967 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Submanifolds. http://id.loc.gov/authorities/subjects/sh85129484 Géodésiques (Mathématiques) Géométrie de Riemann. Variétés de Riemann. Sous-variétés (Mathématiques) MATHEMATICS Geometry Analytic. bisacsh Geodesics (Mathematics) fast Geometry, Riemannian fast Riemannian manifolds fast Submanifolds fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85053967 http://id.loc.gov/authorities/subjects/sh85054159 http://id.loc.gov/authorities/subjects/sh85114045 http://id.loc.gov/authorities/subjects/sh85129484 |
title | Sub-Riemannian Geometry : General Theory and Examples. |
title_auth | Sub-Riemannian Geometry : General Theory and Examples. |
title_exact_search | Sub-Riemannian Geometry : General Theory and Examples. |
title_full | Sub-Riemannian Geometry : General Theory and Examples. |
title_fullStr | Sub-Riemannian Geometry : General Theory and Examples. |
title_full_unstemmed | Sub-Riemannian Geometry : General Theory and Examples. |
title_short | Sub-Riemannian Geometry : |
title_sort | sub riemannian geometry general theory and examples |
title_sub | General Theory and Examples. |
topic | Geodesics (Mathematics) http://id.loc.gov/authorities/subjects/sh85053967 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Submanifolds. http://id.loc.gov/authorities/subjects/sh85129484 Géodésiques (Mathématiques) Géométrie de Riemann. Variétés de Riemann. Sous-variétés (Mathématiques) MATHEMATICS Geometry Analytic. bisacsh Geodesics (Mathematics) fast Geometry, Riemannian fast Riemannian manifolds fast Submanifolds fast |
topic_facet | Geodesics (Mathematics) Geometry, Riemannian. Riemannian manifolds. Submanifolds. Géodésiques (Mathématiques) Géométrie de Riemann. Variétés de Riemann. Sous-variétés (Mathématiques) MATHEMATICS Geometry Analytic. Geometry, Riemannian Riemannian manifolds Submanifolds |
work_keys_str_mv | AT calinovidiu subriemanniangeometrygeneraltheoryandexamples AT changderchen subriemanniangeometrygeneraltheoryandexamples |