Paradoxes and sophisms in calculus /:
In the study of mathematics, surprising and counter-intuitive examples can offer a fascinating insight into the development of the subject, and inspire a learner's passion for discovery. With a carefully-chosen selection of so-called paradoxes and sophisms, this book offers a delightful supplem...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C. :
Mathematical Association of America,
©2013.
|
Schriftenreihe: | Classroom resource materials.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In the study of mathematics, surprising and counter-intuitive examples can offer a fascinating insight into the development of the subject, and inspire a learner's passion for discovery. With a carefully-chosen selection of so-called paradoxes and sophisms, this book offers a delightful supplementary resource to enhance the study of single variable calculus. By paradox, the authors mean an unexpected statement that looks invalid, but is in fact true. The word sophism describes intentionally invalid reasoning that looks formally correct, but, in fact, contains a subtle mistake or flaw. This collection of over fifty paradoxes and sophisms showcases the subtleties of calculus and leads students to contemplate the underlying concepts. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored, with full explanations provided for each example. The book is an ideal resource for those studying or teaching calculus at high school and university level. |
Beschreibung: | 1 online resource (xiii, 98 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 95-96). |
ISBN: | 9781614441106 1614441103 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn847680790 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130611s2013 dcua ob 000 0 eng d | ||
010 | |z 2013934605 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d OCLCF |d OCLCO |d COO |d OCL |d OCLCQ |d JSTOR |d EBLCP |d OCLCQ |d AZK |d LOA |d AGLDB |d Z5A |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d VT2 |d AU@ |d OCLCQ |d WYU |d A6Q |d DKC |d OCLCQ |d M8D |d OCLCQ |d UKCRE |d AJS |d CUY |d OCLCA |d OCLCO |d QGK |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
019 | |a 858088959 |a 961670069 |a 962588052 |a 966234229 |a 988433857 |a 992075435 |a 1037932443 |a 1038652123 |a 1045484390 |a 1055390489 |a 1058167458 |a 1065703017 |a 1081290866 |a 1083614993 |a 1097154957 |a 1153496741 |a 1198811995 |a 1228534186 |a 1259147283 |a 1391147674 | ||
020 | |a 9781614441106 |q (electronic bk.) | ||
020 | |a 1614441103 |q (electronic bk.) | ||
020 | |z 0883857812 | ||
020 | |z 9780883857816 | ||
035 | |a (OCoLC)847680790 |z (OCoLC)858088959 |z (OCoLC)961670069 |z (OCoLC)962588052 |z (OCoLC)966234229 |z (OCoLC)988433857 |z (OCoLC)992075435 |z (OCoLC)1037932443 |z (OCoLC)1038652123 |z (OCoLC)1045484390 |z (OCoLC)1055390489 |z (OCoLC)1058167458 |z (OCoLC)1065703017 |z (OCoLC)1081290866 |z (OCoLC)1083614993 |z (OCoLC)1097154957 |z (OCoLC)1153496741 |z (OCoLC)1198811995 |z (OCoLC)1228534186 |z (OCoLC)1259147283 |z (OCoLC)1391147674 | ||
037 | |b 00016641 | ||
037 | |a 22573/ctt59h262 |b JSTOR | ||
050 | 4 | |a QA303.2 |b .K596 2013eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a MAT005000 |2 bisacsh | |
082 | 7 | |a 515 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Klymchuk, Sergiy. | |
245 | 1 | 0 | |a Paradoxes and sophisms in calculus / |c Sergiy Klymchuk and Susan Staples. |
260 | |a Washington, D.C. : |b Mathematical Association of America, |c ©2013. | ||
300 | |a 1 online resource (xiii, 98 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Classroom resource materials | |
504 | |a Includes bibliographical references (pages 95-96). | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a In the study of mathematics, surprising and counter-intuitive examples can offer a fascinating insight into the development of the subject, and inspire a learner's passion for discovery. With a carefully-chosen selection of so-called paradoxes and sophisms, this book offers a delightful supplementary resource to enhance the study of single variable calculus. By paradox, the authors mean an unexpected statement that looks invalid, but is in fact true. The word sophism describes intentionally invalid reasoning that looks formally correct, but, in fact, contains a subtle mistake or flaw. This collection of over fifty paradoxes and sophisms showcases the subtleties of calculus and leads students to contemplate the underlying concepts. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored, with full explanations provided for each example. The book is an ideal resource for those studying or teaching calculus at high school and university level. | |
505 | 0 | |a Paradoxes. Functions and limits ; Derivatives and integrals -- Sophisms. Functions and limits ; Derivatives and integrals -- Solutions to paradoxes. Functions and limits ; Derivatives and integrals -- Solutions to sophisms. Functions and limits ; Derivatives and integrals. | |
546 | |a English. | ||
650 | 0 | |a Calculus |v Problems, exercises, etc. | |
650 | 0 | |a Paradoxes |x Mathematical models. | |
650 | 6 | |a Calcul infinitésimal |v Problèmes et exercices. | |
650 | 6 | |a Paradoxes |x Modèles mathématiques. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus |2 fast | |
650 | 7 | |a Paradoxes |x Mathematical models |2 fast | |
655 | 7 | |a Problems and exercises |2 fast | |
700 | 1 | |a Staples, Susan. | |
758 | |i has work: |a Paradoxes and sophisms in calculus (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGHyCHgjR3rTRJBygbP84q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Klymchuk, Sergiy. |t Paradoxes and sophisms in calculus. |d Washington, D.C. : Mathematical Association of America, ©2013 |z 9780883857816 |w (OCoLC)826855542 |
830 | 0 | |a Classroom resource materials. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=578522 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330355 | ||
938 | |a ebrary |b EBRY |n ebr10722466 | ||
938 | |a EBSCOhost |b EBSC |n 578522 | ||
938 | |a YBP Library Services |b YANK |n 10710393 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn847680790 |
---|---|
_version_ | 1816882235534475264 |
adam_text | |
any_adam_object | |
author | Klymchuk, Sergiy |
author2 | Staples, Susan |
author2_role | |
author2_variant | s s ss |
author_facet | Klymchuk, Sergiy Staples, Susan |
author_role | |
author_sort | Klymchuk, Sergiy |
author_variant | s k sk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA303 |
callnumber-raw | QA303.2 .K596 2013eb |
callnumber-search | QA303.2 .K596 2013eb |
callnumber-sort | QA 3303.2 K596 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Paradoxes. Functions and limits ; Derivatives and integrals -- Sophisms. Functions and limits ; Derivatives and integrals -- Solutions to paradoxes. Functions and limits ; Derivatives and integrals -- Solutions to sophisms. Functions and limits ; Derivatives and integrals. |
ctrlnum | (OCoLC)847680790 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04714cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn847680790</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130611s2013 dcua ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2013934605</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">Z5A</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">A6Q</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">858088959</subfield><subfield code="a">961670069</subfield><subfield code="a">962588052</subfield><subfield code="a">966234229</subfield><subfield code="a">988433857</subfield><subfield code="a">992075435</subfield><subfield code="a">1037932443</subfield><subfield code="a">1038652123</subfield><subfield code="a">1045484390</subfield><subfield code="a">1055390489</subfield><subfield code="a">1058167458</subfield><subfield code="a">1065703017</subfield><subfield code="a">1081290866</subfield><subfield code="a">1083614993</subfield><subfield code="a">1097154957</subfield><subfield code="a">1153496741</subfield><subfield code="a">1198811995</subfield><subfield code="a">1228534186</subfield><subfield code="a">1259147283</subfield><subfield code="a">1391147674</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614441106</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614441103</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0883857812</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780883857816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847680790</subfield><subfield code="z">(OCoLC)858088959</subfield><subfield code="z">(OCoLC)961670069</subfield><subfield code="z">(OCoLC)962588052</subfield><subfield code="z">(OCoLC)966234229</subfield><subfield code="z">(OCoLC)988433857</subfield><subfield code="z">(OCoLC)992075435</subfield><subfield code="z">(OCoLC)1037932443</subfield><subfield code="z">(OCoLC)1038652123</subfield><subfield code="z">(OCoLC)1045484390</subfield><subfield code="z">(OCoLC)1055390489</subfield><subfield code="z">(OCoLC)1058167458</subfield><subfield code="z">(OCoLC)1065703017</subfield><subfield code="z">(OCoLC)1081290866</subfield><subfield code="z">(OCoLC)1083614993</subfield><subfield code="z">(OCoLC)1097154957</subfield><subfield code="z">(OCoLC)1153496741</subfield><subfield code="z">(OCoLC)1198811995</subfield><subfield code="z">(OCoLC)1228534186</subfield><subfield code="z">(OCoLC)1259147283</subfield><subfield code="z">(OCoLC)1391147674</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">00016641</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt59h262</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA303.2</subfield><subfield code="b">.K596 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klymchuk, Sergiy.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Paradoxes and sophisms in calculus /</subfield><subfield code="c">Sergiy Klymchuk and Susan Staples.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Washington, D.C. :</subfield><subfield code="b">Mathematical Association of America,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 98 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classroom resource materials</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 95-96).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">In the study of mathematics, surprising and counter-intuitive examples can offer a fascinating insight into the development of the subject, and inspire a learner's passion for discovery. With a carefully-chosen selection of so-called paradoxes and sophisms, this book offers a delightful supplementary resource to enhance the study of single variable calculus. By paradox, the authors mean an unexpected statement that looks invalid, but is in fact true. The word sophism describes intentionally invalid reasoning that looks formally correct, but, in fact, contains a subtle mistake or flaw. This collection of over fifty paradoxes and sophisms showcases the subtleties of calculus and leads students to contemplate the underlying concepts. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored, with full explanations provided for each example. The book is an ideal resource for those studying or teaching calculus at high school and university level.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Paradoxes. Functions and limits ; Derivatives and integrals -- Sophisms. Functions and limits ; Derivatives and integrals -- Solutions to paradoxes. Functions and limits ; Derivatives and integrals -- Solutions to sophisms. Functions and limits ; Derivatives and integrals.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus</subfield><subfield code="v">Problems, exercises, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Paradoxes</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul infinitésimal</subfield><subfield code="v">Problèmes et exercices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Paradoxes</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Paradoxes</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Problems and exercises</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Staples, Susan.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Paradoxes and sophisms in calculus (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGHyCHgjR3rTRJBygbP84q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Klymchuk, Sergiy.</subfield><subfield code="t">Paradoxes and sophisms in calculus.</subfield><subfield code="d">Washington, D.C. : Mathematical Association of America, ©2013</subfield><subfield code="z">9780883857816</subfield><subfield code="w">(OCoLC)826855542</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classroom resource materials.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=578522</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330355</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10722466</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">578522</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10710393</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Problems and exercises fast |
genre_facet | Problems and exercises |
id | ZDB-4-EBA-ocn847680790 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:23Z |
institution | BVB |
isbn | 9781614441106 1614441103 |
language | English |
oclc_num | 847680790 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 98 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Mathematical Association of America, |
record_format | marc |
series | Classroom resource materials. |
series2 | Classroom resource materials |
spelling | Klymchuk, Sergiy. Paradoxes and sophisms in calculus / Sergiy Klymchuk and Susan Staples. Washington, D.C. : Mathematical Association of America, ©2013. 1 online resource (xiii, 98 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Classroom resource materials Includes bibliographical references (pages 95-96). Print version record. In the study of mathematics, surprising and counter-intuitive examples can offer a fascinating insight into the development of the subject, and inspire a learner's passion for discovery. With a carefully-chosen selection of so-called paradoxes and sophisms, this book offers a delightful supplementary resource to enhance the study of single variable calculus. By paradox, the authors mean an unexpected statement that looks invalid, but is in fact true. The word sophism describes intentionally invalid reasoning that looks formally correct, but, in fact, contains a subtle mistake or flaw. This collection of over fifty paradoxes and sophisms showcases the subtleties of calculus and leads students to contemplate the underlying concepts. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored, with full explanations provided for each example. The book is an ideal resource for those studying or teaching calculus at high school and university level. Paradoxes. Functions and limits ; Derivatives and integrals -- Sophisms. Functions and limits ; Derivatives and integrals -- Solutions to paradoxes. Functions and limits ; Derivatives and integrals -- Solutions to sophisms. Functions and limits ; Derivatives and integrals. English. Calculus Problems, exercises, etc. Paradoxes Mathematical models. Calcul infinitésimal Problèmes et exercices. Paradoxes Modèles mathématiques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Paradoxes Mathematical models fast Problems and exercises fast Staples, Susan. has work: Paradoxes and sophisms in calculus (Text) https://id.oclc.org/worldcat/entity/E39PCGHyCHgjR3rTRJBygbP84q https://id.oclc.org/worldcat/ontology/hasWork Print version: Klymchuk, Sergiy. Paradoxes and sophisms in calculus. Washington, D.C. : Mathematical Association of America, ©2013 9780883857816 (OCoLC)826855542 Classroom resource materials. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=578522 Volltext |
spellingShingle | Klymchuk, Sergiy Paradoxes and sophisms in calculus / Classroom resource materials. Paradoxes. Functions and limits ; Derivatives and integrals -- Sophisms. Functions and limits ; Derivatives and integrals -- Solutions to paradoxes. Functions and limits ; Derivatives and integrals -- Solutions to sophisms. Functions and limits ; Derivatives and integrals. Calculus Problems, exercises, etc. Paradoxes Mathematical models. Calcul infinitésimal Problèmes et exercices. Paradoxes Modèles mathématiques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Paradoxes Mathematical models fast |
title | Paradoxes and sophisms in calculus / |
title_auth | Paradoxes and sophisms in calculus / |
title_exact_search | Paradoxes and sophisms in calculus / |
title_full | Paradoxes and sophisms in calculus / Sergiy Klymchuk and Susan Staples. |
title_fullStr | Paradoxes and sophisms in calculus / Sergiy Klymchuk and Susan Staples. |
title_full_unstemmed | Paradoxes and sophisms in calculus / Sergiy Klymchuk and Susan Staples. |
title_short | Paradoxes and sophisms in calculus / |
title_sort | paradoxes and sophisms in calculus |
topic | Calculus Problems, exercises, etc. Paradoxes Mathematical models. Calcul infinitésimal Problèmes et exercices. Paradoxes Modèles mathématiques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Paradoxes Mathematical models fast |
topic_facet | Calculus Problems, exercises, etc. Paradoxes Mathematical models. Calcul infinitésimal Problèmes et exercices. Paradoxes Modèles mathématiques. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus Paradoxes Mathematical models Problems and exercises |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=578522 |
work_keys_str_mv | AT klymchuksergiy paradoxesandsophismsincalculus AT staplessusan paradoxesandsophismsincalculus |