Bounded arithmetic, propositional logic, and complexity theory /:
This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing ope...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York, N.Y. :
Cambridge University Press,
1995.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 60. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area. |
Beschreibung: | 1 online resource (xiv, 343 pages) |
Bibliographie: | Includes bibliographical references (pages 327-334) and indexes. |
ISBN: | 9781107088634 1107088631 9780511529948 0511529945 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn847358855 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130608s1995 enk ob 001 0 eng d | ||
040 | |a OL$ |b eng |e pn |c OL$ |d E7B |d CAMBR |d OCLCO |d N$T |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d UAB |d OCLCQ |d VTS |d OCLCQ |d REC |d STF |d AU@ |d M8D |d INARC |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ | ||
019 | |a 708567503 | ||
020 | |a 9781107088634 |q (electronic bk.) | ||
020 | |a 1107088631 |q (electronic bk.) | ||
020 | |a 9780511529948 |q (electronic bk.) | ||
020 | |a 0511529945 |q (electronic bk.) | ||
020 | |z 0521452058 |q (hardback) | ||
020 | |z 9780521452052 | ||
035 | |a (OCoLC)847358855 |z (OCoLC)708567503 | ||
044 | |a enk |a nyu | ||
050 | 4 | |a QA9.56 |b .K73 1995 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Krajíček, Jan. | |
245 | 1 | 0 | |a Bounded arithmetic, propositional logic, and complexity theory / |c Jan Krajíček. |
260 | |a Cambridge [England] ; |a New York, N.Y. : |b Cambridge University Press, |c 1995. | ||
300 | |a 1 online resource (xiv, 343 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v v. 60 | |
504 | |a Includes bibliographical references (pages 327-334) and indexes. | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area. | ||
505 | 8 | |a 7.7 Bibliographical and other remarks8 Definability and witnessing in second order theories; 8.1 Second order computations; 8.2 Definable functionals; 8.3 Bibliographical and other remarks; 9 Translations of arithmetic formulas; 9.1 Bounded formulas with a predicate; 9.2 Translation into quantified propositional formulas; 9.3 Reflection principles and polynomial simulations; 9.4 Model-theoretic constructions; 9.5 Witnessing and test trees; 9.6 Bibliographical and other remarks; 10 Finite axiomatizability problem; 10.1 Finite axiomatizability of Si2 and Ti2; 10.2 Ti2 versus Si2+1 | |
505 | 8 | |a 10.3 Si2 versus Ti210.4 Relativized cases; 10.5 Consistency notions; 10.6 Bibliographical and other remarks; 11 Direct independence proofs; 11.1 Herbrandization of induction axioms; 11.2 Weak pigeonhole principle; 11.3 An independence criterion; 11.4 Lifting independence results; 11.5 Bibliographical and other remarks; 12 Bounds for constant-depth Frege systems; 12.1 Upper bounds; 12.2 Depth d versus depth d + 1; 12.3 Complete systems; 12.4 k-evaluations; 12.5 Lower bounds for the pigeonhole principle and for counting principles; 12.6 Systems with counting gates | |
505 | 8 | |a 12.7 Forcing in nonstandard models12.8 Bibliographical and other remarks; 13 Bounds for Frege and extended Frege systems; 13.1 Counting in Frege systems; 13.2 An approach to lower bounds; 13.3 Boolean valuations; 13.4 Bibliographical and other remarks; 14 Hard tautologies and optimal proof systems; 14.1 Finitistic consistency statements and optimal proof systems; 14.2 Hard tautologies; 14.3 Bibliographical and other remarks; 15 Strength of bounded arithmetic; 15.1 Counting; 15.2 A circuit lower bound; 15.3 Polynomial hierarchy in models of bounded arithmetic | |
650 | 0 | |a Constructive mathematics. |0 http://id.loc.gov/authorities/subjects/sh85031452 | |
650 | 0 | |a Proposition (Logic) |0 http://id.loc.gov/authorities/subjects/sh85107552 | |
650 | 0 | |a Computational complexity. |0 http://id.loc.gov/authorities/subjects/sh85029473 | |
650 | 6 | |a Mathématiques constructives. | |
650 | 6 | |a Proposition (Logique) | |
650 | 6 | |a Complexité de calcul (Informatique) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Constructive mathematics |2 fast | |
650 | 7 | |a Proposition (Logic) |2 fast | |
710 | 2 | |a Cambridge University Press. |0 http://id.loc.gov/authorities/names/n50059133 | |
730 | 0 | |a Cambridge books online Mathematics. | |
776 | 0 | 8 | |i Print version: |a Krajíček, Jan. |t Bounded arithmetic, propositional logic, and complexity theory. |d Cambridge [England] ; New York, N.Y. : Cambridge University Press, 1995 |z 9780511529948 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 60. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569329 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10446114 | ||
938 | |a EBSCOhost |b EBSC |n 569329 | ||
938 | |a Internet Archive |b INAR |n boundedarithmeti0000kraj | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn847358855 |
---|---|
_version_ | 1816882234713440256 |
adam_text | |
any_adam_object | |
author | Krajíček, Jan |
author_corporate | Cambridge University Press |
author_corporate_role | |
author_facet | Krajíček, Jan Cambridge University Press |
author_role | |
author_sort | Krajíček, Jan |
author_variant | j k jk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.56 .K73 1995 |
callnumber-search | QA9.56 .K73 1995 |
callnumber-sort | QA 19.56 K73 41995 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 7.7 Bibliographical and other remarks8 Definability and witnessing in second order theories; 8.1 Second order computations; 8.2 Definable functionals; 8.3 Bibliographical and other remarks; 9 Translations of arithmetic formulas; 9.1 Bounded formulas with a predicate; 9.2 Translation into quantified propositional formulas; 9.3 Reflection principles and polynomial simulations; 9.4 Model-theoretic constructions; 9.5 Witnessing and test trees; 9.6 Bibliographical and other remarks; 10 Finite axiomatizability problem; 10.1 Finite axiomatizability of Si2 and Ti2; 10.2 Ti2 versus Si2+1 10.3 Si2 versus Ti210.4 Relativized cases; 10.5 Consistency notions; 10.6 Bibliographical and other remarks; 11 Direct independence proofs; 11.1 Herbrandization of induction axioms; 11.2 Weak pigeonhole principle; 11.3 An independence criterion; 11.4 Lifting independence results; 11.5 Bibliographical and other remarks; 12 Bounds for constant-depth Frege systems; 12.1 Upper bounds; 12.2 Depth d versus depth d + 1; 12.3 Complete systems; 12.4 k-evaluations; 12.5 Lower bounds for the pigeonhole principle and for counting principles; 12.6 Systems with counting gates 12.7 Forcing in nonstandard models12.8 Bibliographical and other remarks; 13 Bounds for Frege and extended Frege systems; 13.1 Counting in Frege systems; 13.2 An approach to lower bounds; 13.3 Boolean valuations; 13.4 Bibliographical and other remarks; 14 Hard tautologies and optimal proof systems; 14.1 Finitistic consistency statements and optimal proof systems; 14.2 Hard tautologies; 14.3 Bibliographical and other remarks; 15 Strength of bounded arithmetic; 15.1 Counting; 15.2 A circuit lower bound; 15.3 Polynomial hierarchy in models of bounded arithmetic |
ctrlnum | (OCoLC)847358855 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05868cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn847358855</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130608s1995 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OL$</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OL$</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708567503</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088634</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088631</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511529948</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511529945</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521452058</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521452052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847358855</subfield><subfield code="z">(OCoLC)708567503</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">enk</subfield><subfield code="a">nyu</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.56</subfield><subfield code="b">.K73 1995</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krajíček, Jan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bounded arithmetic, propositional logic, and complexity theory /</subfield><subfield code="c">Jan Krajíček.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York, N.Y. :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 343 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 60</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 327-334) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.7 Bibliographical and other remarks8 Definability and witnessing in second order theories; 8.1 Second order computations; 8.2 Definable functionals; 8.3 Bibliographical and other remarks; 9 Translations of arithmetic formulas; 9.1 Bounded formulas with a predicate; 9.2 Translation into quantified propositional formulas; 9.3 Reflection principles and polynomial simulations; 9.4 Model-theoretic constructions; 9.5 Witnessing and test trees; 9.6 Bibliographical and other remarks; 10 Finite axiomatizability problem; 10.1 Finite axiomatizability of Si2 and Ti2; 10.2 Ti2 versus Si2+1</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3 Si2 versus Ti210.4 Relativized cases; 10.5 Consistency notions; 10.6 Bibliographical and other remarks; 11 Direct independence proofs; 11.1 Herbrandization of induction axioms; 11.2 Weak pigeonhole principle; 11.3 An independence criterion; 11.4 Lifting independence results; 11.5 Bibliographical and other remarks; 12 Bounds for constant-depth Frege systems; 12.1 Upper bounds; 12.2 Depth d versus depth d + 1; 12.3 Complete systems; 12.4 k-evaluations; 12.5 Lower bounds for the pigeonhole principle and for counting principles; 12.6 Systems with counting gates</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.7 Forcing in nonstandard models12.8 Bibliographical and other remarks; 13 Bounds for Frege and extended Frege systems; 13.1 Counting in Frege systems; 13.2 An approach to lower bounds; 13.3 Boolean valuations; 13.4 Bibliographical and other remarks; 14 Hard tautologies and optimal proof systems; 14.1 Finitistic consistency statements and optimal proof systems; 14.2 Hard tautologies; 14.3 Bibliographical and other remarks; 15 Strength of bounded arithmetic; 15.1 Counting; 15.2 A circuit lower bound; 15.3 Polynomial hierarchy in models of bounded arithmetic</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Constructive mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031452</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Proposition (Logic)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107552</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational complexity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029473</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques constructives.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Proposition (Logique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexité de calcul (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constructive mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proposition (Logic)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Cambridge University Press.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n50059133</subfield></datafield><datafield tag="730" ind1="0" ind2=" "><subfield code="a">Cambridge books online Mathematics.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krajíček, Jan.</subfield><subfield code="t">Bounded arithmetic, propositional logic, and complexity theory.</subfield><subfield code="d">Cambridge [England] ; New York, N.Y. : Cambridge University Press, 1995</subfield><subfield code="z">9780511529948</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 60.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569329</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10446114</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569329</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">boundedarithmeti0000kraj</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn847358855 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:23Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n50059133 |
isbn | 9781107088634 1107088631 9780511529948 0511529945 |
language | English |
oclc_num | 847358855 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 343 pages) |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Krajíček, Jan. Bounded arithmetic, propositional logic, and complexity theory / Jan Krajíček. Cambridge [England] ; New York, N.Y. : Cambridge University Press, 1995. 1 online resource (xiv, 343 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; v. 60 Includes bibliographical references (pages 327-334) and indexes. Print version record. This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and conservativity results, various witnessing theorems, the translation of bounded formulas (and their proofs) into propositional ones, the method of random partial restrictions and its applications, direct independence proofs, complete systems of partial relations, lower bounds to the size of constant-depth propositional proofs, the method of Boolean valuations, the issue of hard tautologies and optimal proof systems, combinatorics and complexity theory within bounded arithmetic, and relations to complexity issues of predicate calculus. Students and researchers in mathematical logic and complexity theory will find this comprehensive treatment an excellent guide to this expanding interdisciplinary area. 7.7 Bibliographical and other remarks8 Definability and witnessing in second order theories; 8.1 Second order computations; 8.2 Definable functionals; 8.3 Bibliographical and other remarks; 9 Translations of arithmetic formulas; 9.1 Bounded formulas with a predicate; 9.2 Translation into quantified propositional formulas; 9.3 Reflection principles and polynomial simulations; 9.4 Model-theoretic constructions; 9.5 Witnessing and test trees; 9.6 Bibliographical and other remarks; 10 Finite axiomatizability problem; 10.1 Finite axiomatizability of Si2 and Ti2; 10.2 Ti2 versus Si2+1 10.3 Si2 versus Ti210.4 Relativized cases; 10.5 Consistency notions; 10.6 Bibliographical and other remarks; 11 Direct independence proofs; 11.1 Herbrandization of induction axioms; 11.2 Weak pigeonhole principle; 11.3 An independence criterion; 11.4 Lifting independence results; 11.5 Bibliographical and other remarks; 12 Bounds for constant-depth Frege systems; 12.1 Upper bounds; 12.2 Depth d versus depth d + 1; 12.3 Complete systems; 12.4 k-evaluations; 12.5 Lower bounds for the pigeonhole principle and for counting principles; 12.6 Systems with counting gates 12.7 Forcing in nonstandard models12.8 Bibliographical and other remarks; 13 Bounds for Frege and extended Frege systems; 13.1 Counting in Frege systems; 13.2 An approach to lower bounds; 13.3 Boolean valuations; 13.4 Bibliographical and other remarks; 14 Hard tautologies and optimal proof systems; 14.1 Finitistic consistency statements and optimal proof systems; 14.2 Hard tautologies; 14.3 Bibliographical and other remarks; 15 Strength of bounded arithmetic; 15.1 Counting; 15.2 A circuit lower bound; 15.3 Polynomial hierarchy in models of bounded arithmetic Constructive mathematics. http://id.loc.gov/authorities/subjects/sh85031452 Proposition (Logic) http://id.loc.gov/authorities/subjects/sh85107552 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathématiques constructives. Proposition (Logique) Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Computational complexity fast Constructive mathematics fast Proposition (Logic) fast Cambridge University Press. http://id.loc.gov/authorities/names/n50059133 Cambridge books online Mathematics. Print version: Krajíček, Jan. Bounded arithmetic, propositional logic, and complexity theory. Cambridge [England] ; New York, N.Y. : Cambridge University Press, 1995 9780511529948 Encyclopedia of mathematics and its applications ; v. 60. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569329 Volltext |
spellingShingle | Krajíček, Jan Bounded arithmetic, propositional logic, and complexity theory / Encyclopedia of mathematics and its applications ; 7.7 Bibliographical and other remarks8 Definability and witnessing in second order theories; 8.1 Second order computations; 8.2 Definable functionals; 8.3 Bibliographical and other remarks; 9 Translations of arithmetic formulas; 9.1 Bounded formulas with a predicate; 9.2 Translation into quantified propositional formulas; 9.3 Reflection principles and polynomial simulations; 9.4 Model-theoretic constructions; 9.5 Witnessing and test trees; 9.6 Bibliographical and other remarks; 10 Finite axiomatizability problem; 10.1 Finite axiomatizability of Si2 and Ti2; 10.2 Ti2 versus Si2+1 10.3 Si2 versus Ti210.4 Relativized cases; 10.5 Consistency notions; 10.6 Bibliographical and other remarks; 11 Direct independence proofs; 11.1 Herbrandization of induction axioms; 11.2 Weak pigeonhole principle; 11.3 An independence criterion; 11.4 Lifting independence results; 11.5 Bibliographical and other remarks; 12 Bounds for constant-depth Frege systems; 12.1 Upper bounds; 12.2 Depth d versus depth d + 1; 12.3 Complete systems; 12.4 k-evaluations; 12.5 Lower bounds for the pigeonhole principle and for counting principles; 12.6 Systems with counting gates 12.7 Forcing in nonstandard models12.8 Bibliographical and other remarks; 13 Bounds for Frege and extended Frege systems; 13.1 Counting in Frege systems; 13.2 An approach to lower bounds; 13.3 Boolean valuations; 13.4 Bibliographical and other remarks; 14 Hard tautologies and optimal proof systems; 14.1 Finitistic consistency statements and optimal proof systems; 14.2 Hard tautologies; 14.3 Bibliographical and other remarks; 15 Strength of bounded arithmetic; 15.1 Counting; 15.2 A circuit lower bound; 15.3 Polynomial hierarchy in models of bounded arithmetic Constructive mathematics. http://id.loc.gov/authorities/subjects/sh85031452 Proposition (Logic) http://id.loc.gov/authorities/subjects/sh85107552 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathématiques constructives. Proposition (Logique) Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Computational complexity fast Constructive mathematics fast Proposition (Logic) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031452 http://id.loc.gov/authorities/subjects/sh85107552 http://id.loc.gov/authorities/subjects/sh85029473 |
title | Bounded arithmetic, propositional logic, and complexity theory / |
title_alt | Cambridge books online Mathematics. |
title_auth | Bounded arithmetic, propositional logic, and complexity theory / |
title_exact_search | Bounded arithmetic, propositional logic, and complexity theory / |
title_full | Bounded arithmetic, propositional logic, and complexity theory / Jan Krajíček. |
title_fullStr | Bounded arithmetic, propositional logic, and complexity theory / Jan Krajíček. |
title_full_unstemmed | Bounded arithmetic, propositional logic, and complexity theory / Jan Krajíček. |
title_short | Bounded arithmetic, propositional logic, and complexity theory / |
title_sort | bounded arithmetic propositional logic and complexity theory |
topic | Constructive mathematics. http://id.loc.gov/authorities/subjects/sh85031452 Proposition (Logic) http://id.loc.gov/authorities/subjects/sh85107552 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathématiques constructives. Proposition (Logique) Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Computational complexity fast Constructive mathematics fast Proposition (Logic) fast |
topic_facet | Constructive mathematics. Proposition (Logic) Computational complexity. Mathématiques constructives. Proposition (Logique) Complexité de calcul (Informatique) MATHEMATICS General. Computational complexity Constructive mathematics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569329 |
work_keys_str_mv | UT cambridgebooksonlinemathematics AT krajicekjan boundedarithmeticpropositionallogicandcomplexitytheory AT cambridgeuniversitypress boundedarithmeticpropositionallogicandcomplexitytheory |