Principles of big data :: preparing, sharing, and analyzing complex information /
"Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam :
Elsevier, Morgan Kaufmann,
[2013]
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | "Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources"--Provided by publisher. |
Beschreibung: | 1 online resource (xxvi, 261 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780124047242 0124047246 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846495000 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603t20132013ne ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OPELS |d VRC |d E7B |d YDXCP |d TEFOD |d NOC |d OCLCF |d WAU |d UPM |d GGVRL |d WAU |d UAB |d CDX |d DKDLA |d UKDOC |d RIV |d DEBSZ |d OCLCQ |d TEFOD |d OCLCQ |d LOA |d ICA |d AGLDB |d K6U |d PIFAG |d FVL |d ZCU |d MERUC |d OCLCQ |d U3W |d D6H |d UUM |d STF |d WRM |d VTS |d ICG |d INT |d AU@ |d OCLCQ |d WYU |d G3B |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 852787570 |a 1110220385 |a 1116139342 | ||
020 | |a 9780124047242 |q (electronic book) | ||
020 | |a 0124047246 |q (electronic book) | ||
020 | |z 9780124045767 |q (paper) | ||
020 | |z 0124045766 |q (paper) | ||
035 | |a (OCoLC)846495000 |z (OCoLC)852787570 |z (OCoLC)1110220385 |z (OCoLC)1116139342 | ||
037 | |a D74D4722-8488-4CA0-B95F-0DA26CA9BE1E |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.9.D32 |b B47 2013eb | |
072 | 7 | |a COM |x 021000 |2 bisacsh | |
072 | 7 | |a COM |x 084010 |2 bisacsh | |
072 | 7 | |a COM |x 030000 |2 bisacsh | |
082 | 7 | |a 005.74 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Berman, Jules J., |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjB7VXkQdjtq3Bj3CMWQRq |0 http://id.loc.gov/authorities/names/n2006035254 | |
245 | 1 | 0 | |a Principles of big data : |b preparing, sharing, and analyzing complex information / |c Jules J Berman. |
264 | 1 | |a Amsterdam : |b Elsevier, Morgan Kaufmann, |c [2013] | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xxvi, 261 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future. | |
520 | |a "Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources"--Provided by publisher. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 0 | |a Database management. |0 http://id.loc.gov/authorities/subjects/sh85035848 | |
650 | 6 | |a Données volumineuses. | |
650 | 6 | |a Bases de données |x Gestion. | |
650 | 7 | |a COMPUTERS |x Database Management |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Desktop Applications |x Databases. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x System Administration |x Storage & Retrieval. |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Database management |2 fast | |
758 | |i has work: |a Principles of big data (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFKGHvd4M6Xgx6xFcqjh6q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Berman, Jules J. |t Principles of big data. |d Amsterdam : Elsevier, Morgan Kaufmann, [2013] |z 9780124045767 |w (DLC) 2013006421 |w (OCoLC)841050173 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486639 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780124045767 |3 Volltext |
938 | |a 123Library |b 123L |n 102081 | ||
938 | |a Coutts Information Services |b COUT |n 25589875 | ||
938 | |a ebrary |b EBRY |n ebr10714583 | ||
938 | |a EBSCOhost |b EBSC |n 486639 | ||
938 | |a Cengage Learning |b GVRL |n GVRL6ZZN | ||
938 | |a YBP Library Services |b YANK |n 10745431 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846495000 |
---|---|
_version_ | 1816882234109460480 |
adam_text | |
any_adam_object | |
author | Berman, Jules J. |
author_GND | http://id.loc.gov/authorities/names/n2006035254 |
author_facet | Berman, Jules J. |
author_role | aut |
author_sort | Berman, Jules J. |
author_variant | j j b jj jjb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D32 B47 2013eb |
callnumber-search | QA76.9.D32 B47 2013eb |
callnumber-sort | QA 276.9 D32 B47 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future. |
ctrlnum | (OCoLC)846495000 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04975cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846495000</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603t20132013ne ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OPELS</subfield><subfield code="d">VRC</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">NOC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">WAU</subfield><subfield code="d">UPM</subfield><subfield code="d">GGVRL</subfield><subfield code="d">WAU</subfield><subfield code="d">UAB</subfield><subfield code="d">CDX</subfield><subfield code="d">DKDLA</subfield><subfield code="d">UKDOC</subfield><subfield code="d">RIV</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">ICA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">K6U</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">852787570</subfield><subfield code="a">1110220385</subfield><subfield code="a">1116139342</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124047242</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124047246</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780124045767</subfield><subfield code="q">(paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0124045766</subfield><subfield code="q">(paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846495000</subfield><subfield code="z">(OCoLC)852787570</subfield><subfield code="z">(OCoLC)1110220385</subfield><subfield code="z">(OCoLC)1116139342</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">D74D4722-8488-4CA0-B95F-0DA26CA9BE1E</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D32</subfield><subfield code="b">B47 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">084010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">030000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berman, Jules J.,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB7VXkQdjtq3Bj3CMWQRq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006035254</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of big data :</subfield><subfield code="b">preparing, sharing, and analyzing complex information /</subfield><subfield code="c">Jules J Berman.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam :</subfield><subfield code="b">Elsevier, Morgan Kaufmann,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvi, 261 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources"--Provided by publisher.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85035848</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bases de données</subfield><subfield code="x">Gestion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Database Management</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Desktop Applications</subfield><subfield code="x">Databases.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">System Administration</subfield><subfield code="x">Storage & Retrieval.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Database management</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Principles of big data (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFKGHvd4M6Xgx6xFcqjh6q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berman, Jules J.</subfield><subfield code="t">Principles of big data.</subfield><subfield code="d">Amsterdam : Elsevier, Morgan Kaufmann, [2013]</subfield><subfield code="z">9780124045767</subfield><subfield code="w">(DLC) 2013006421</subfield><subfield code="w">(OCoLC)841050173</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486639</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780124045767</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">123Library</subfield><subfield code="b">123L</subfield><subfield code="n">102081</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25589875</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10714583</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">486639</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL6ZZN</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10745431</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn846495000 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9780124047242 0124047246 |
language | English |
oclc_num | 846495000 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxvi, 261 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Elsevier, Morgan Kaufmann, |
record_format | marc |
spelling | Berman, Jules J., author. https://id.oclc.org/worldcat/entity/E39PCjB7VXkQdjtq3Bj3CMWQRq http://id.loc.gov/authorities/names/n2006035254 Principles of big data : preparing, sharing, and analyzing complex information / Jules J Berman. Amsterdam : Elsevier, Morgan Kaufmann, [2013] ©2013 1 online resource (xxvi, 261 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. 1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future. "Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources"--Provided by publisher. Print version record. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. COMPUTERS Database Management General. bisacsh COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Big data fast Database management fast has work: Principles of big data (Text) https://id.oclc.org/worldcat/entity/E39PCFKGHvd4M6Xgx6xFcqjh6q https://id.oclc.org/worldcat/ontology/hasWork Print version: Berman, Jules J. Principles of big data. Amsterdam : Elsevier, Morgan Kaufmann, [2013] 9780124045767 (DLC) 2013006421 (OCoLC)841050173 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486639 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780124045767 Volltext |
spellingShingle | Berman, Jules J. Principles of big data : preparing, sharing, and analyzing complex information / 1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. COMPUTERS Database Management General. bisacsh COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Big data fast Database management fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/subjects/sh85035848 |
title | Principles of big data : preparing, sharing, and analyzing complex information / |
title_auth | Principles of big data : preparing, sharing, and analyzing complex information / |
title_exact_search | Principles of big data : preparing, sharing, and analyzing complex information / |
title_full | Principles of big data : preparing, sharing, and analyzing complex information / Jules J Berman. |
title_fullStr | Principles of big data : preparing, sharing, and analyzing complex information / Jules J Berman. |
title_full_unstemmed | Principles of big data : preparing, sharing, and analyzing complex information / Jules J Berman. |
title_short | Principles of big data : |
title_sort | principles of big data preparing sharing and analyzing complex information |
title_sub | preparing, sharing, and analyzing complex information / |
topic | Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. COMPUTERS Database Management General. bisacsh COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Big data fast Database management fast |
topic_facet | Big data. Database management. Données volumineuses. Bases de données Gestion. COMPUTERS Database Management General. COMPUTERS Desktop Applications Databases. COMPUTERS System Administration Storage & Retrieval. Big data Database management |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486639 https://www.sciencedirect.com/science/book/9780124045767 |
work_keys_str_mv | AT bermanjulesj principlesofbigdatapreparingsharingandanalyzingcomplexinformation |