Analytic theory of Abelian varieties /:
The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introdu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
University Press,
1974.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
14. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however. |
Beschreibung: | 1 online resource (vii, 90 pages) |
Bibliographie: | Includes bibliographical references (pages 87-88) and index. |
ISBN: | 9781107087033 1107087031 9780511662621 0511662629 1299706738 9781299706736 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846494987 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603s1974 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d XFH |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d YDX |d OCLCO |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d INARC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 841393157 |a 994346631 | ||
020 | |a 9781107087033 |q (electronic bk.) | ||
020 | |a 1107087031 |q (electronic bk.) | ||
020 | |a 9780511662621 |q (electronic bk.) | ||
020 | |a 0511662629 |q (electronic bk.) | ||
020 | |a 1299706738 | ||
020 | |a 9781299706736 | ||
020 | |z 0521205263 | ||
020 | |z 9780521205269 | ||
035 | |a (OCoLC)846494987 |z (OCoLC)841393157 |z (OCoLC)994346631 | ||
050 | 4 | |a QA564 |b .S94 1974eb | |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
082 | 7 | |a 516/.353 |2 22 | |
084 | |a SI 320 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Swinnerton-Dyer, H. P. F. | |
245 | 1 | 0 | |a Analytic theory of Abelian varieties / |c H.P.F. Swinnerton-Dyer. |
260 | |a Cambridge : |b University Press, |c 1974. | ||
300 | |a 1 online resource (vii, 90 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 14 | |
504 | |a Includes bibliographical references (pages 87-88) and index. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
520 | |a The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however. | ||
650 | 0 | |a Abelian varieties. |0 http://id.loc.gov/authorities/subjects/sh85000130 | |
650 | 0 | |a Riemann surfaces. |0 http://id.loc.gov/authorities/subjects/sh85114044 | |
650 | 0 | |a Functions, Meromorphic. |0 http://id.loc.gov/authorities/subjects/sh85052343 | |
650 | 6 | |a Variétés abéliennes. | |
650 | 6 | |a Surfaces de Riemann. | |
650 | 6 | |a Fonctions méromorphes. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a Abelian varieties |2 fast | |
650 | 7 | |a Functions, Meromorphic |2 fast | |
650 | 7 | |a Riemann surfaces |2 fast | |
650 | 7 | |a Abelsche Mannigfaltigkeit |2 gnd |0 http://d-nb.info/gnd/4140992-9 | |
650 | 7 | |a Variétés abéliennes. |2 ram | |
650 | 7 | |a Riemann, Surfaces de. |2 ram | |
650 | 7 | |a Fonctions méromorphes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Swinnerton-Dyer, H.P.F. |t Analytic theory of Abelian varieties. |d Cambridge : University Press, 1974 |z 0521205263 |w (DLC) 74077835 |w (OCoLC)1195182 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 14. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 569314 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25780835 | ||
938 | |a Internet Archive |b INAR |n analytictheoryof0000swin | ||
938 | |a YBP Library Services |b YANK |n 10440734 | ||
938 | |a YBP Library Services |b YANK |n 10734733 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846494987 |
---|---|
_version_ | 1816882234098974720 |
adam_text | |
any_adam_object | |
author | Swinnerton-Dyer, H. P. F. |
author_facet | Swinnerton-Dyer, H. P. F. |
author_role | |
author_sort | Swinnerton-Dyer, H. P. F. |
author_variant | h p f s d hpfs hpfsd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 .S94 1974eb |
callnumber-search | QA564 .S94 1974eb |
callnumber-sort | QA 3564 S94 41974EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)846494987 |
dewey-full | 516/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.353 |
dewey-search | 516/.353 |
dewey-sort | 3516 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03654cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846494987</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603s1974 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">XFH</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">841393157</subfield><subfield code="a">994346631</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087033</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087031</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662621</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662629</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299706738</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299706736</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521205263</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521205269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846494987</subfield><subfield code="z">(OCoLC)841393157</subfield><subfield code="z">(OCoLC)994346631</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA564</subfield><subfield code="b">.S94 1974eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swinnerton-Dyer, H. P. F.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic theory of Abelian varieties /</subfield><subfield code="c">H.P.F. Swinnerton-Dyer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">University Press,</subfield><subfield code="c">1974.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 90 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">14</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 87-88) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Abelian varieties.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85000130</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemann surfaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114044</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions, Meromorphic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052343</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés abéliennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Surfaces de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions méromorphes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelian varieties</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Meromorphic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann surfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4140992-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés abéliennes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann, Surfaces de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions méromorphes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Swinnerton-Dyer, H.P.F.</subfield><subfield code="t">Analytic theory of Abelian varieties.</subfield><subfield code="d">Cambridge : University Press, 1974</subfield><subfield code="z">0521205263</subfield><subfield code="w">(DLC) 74077835</subfield><subfield code="w">(OCoLC)1195182</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">14.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569314</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25780835</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">analytictheoryof0000swin</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10440734</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734733</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn846494987 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9781107087033 1107087031 9780511662621 0511662629 1299706738 9781299706736 |
language | English |
oclc_num | 846494987 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 90 pages) |
psigel | ZDB-4-EBA |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Swinnerton-Dyer, H. P. F. Analytic theory of Abelian varieties / H.P.F. Swinnerton-Dyer. Cambridge : University Press, 1974. 1 online resource (vii, 90 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 14 Includes bibliographical references (pages 87-88) and index. Print version record. English. The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however. Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Functions, Meromorphic. http://id.loc.gov/authorities/subjects/sh85052343 Variétés abéliennes. Surfaces de Riemann. Fonctions méromorphes. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Functions, Meromorphic fast Riemann surfaces fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Variétés abéliennes. ram Riemann, Surfaces de. ram Fonctions méromorphes. ram Print version: Swinnerton-Dyer, H.P.F. Analytic theory of Abelian varieties. Cambridge : University Press, 1974 0521205263 (DLC) 74077835 (OCoLC)1195182 London Mathematical Society lecture note series ; 14. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314 Volltext |
spellingShingle | Swinnerton-Dyer, H. P. F. Analytic theory of Abelian varieties / London Mathematical Society lecture note series ; Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Functions, Meromorphic. http://id.loc.gov/authorities/subjects/sh85052343 Variétés abéliennes. Surfaces de Riemann. Fonctions méromorphes. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Functions, Meromorphic fast Riemann surfaces fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Variétés abéliennes. ram Riemann, Surfaces de. ram Fonctions méromorphes. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85000130 http://id.loc.gov/authorities/subjects/sh85114044 http://id.loc.gov/authorities/subjects/sh85052343 http://d-nb.info/gnd/4140992-9 |
title | Analytic theory of Abelian varieties / |
title_auth | Analytic theory of Abelian varieties / |
title_exact_search | Analytic theory of Abelian varieties / |
title_full | Analytic theory of Abelian varieties / H.P.F. Swinnerton-Dyer. |
title_fullStr | Analytic theory of Abelian varieties / H.P.F. Swinnerton-Dyer. |
title_full_unstemmed | Analytic theory of Abelian varieties / H.P.F. Swinnerton-Dyer. |
title_short | Analytic theory of Abelian varieties / |
title_sort | analytic theory of abelian varieties |
topic | Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Riemann surfaces. http://id.loc.gov/authorities/subjects/sh85114044 Functions, Meromorphic. http://id.loc.gov/authorities/subjects/sh85052343 Variétés abéliennes. Surfaces de Riemann. Fonctions méromorphes. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Functions, Meromorphic fast Riemann surfaces fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Variétés abéliennes. ram Riemann, Surfaces de. ram Fonctions méromorphes. ram |
topic_facet | Abelian varieties. Riemann surfaces. Functions, Meromorphic. Variétés abéliennes. Surfaces de Riemann. Fonctions méromorphes. MATHEMATICS Geometry Algebraic. Abelian varieties Functions, Meromorphic Riemann surfaces Abelsche Mannigfaltigkeit Riemann, Surfaces de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314 |
work_keys_str_mv | AT swinnertondyerhpf analytictheoryofabelianvarieties |