Local activity principle /:
The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in phy...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Singapore :
Imperial College Press ; Distributed by World Scientific Pub. Co.,
©2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. |
Beschreibung: | 1 online resource (xii, 443 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references (pages 409-421) and indexes. |
ISBN: | 9781908977106 1908977108 9781908977113 1908977116 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn844311083 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cuu|||uu||| | ||
008 | 091123s2013 enka ob 001 0 eng d | ||
010 | |a 2013427768 | ||
040 | |a WSPC |b eng |e pn |c STF |d HKP |d OCLCO |d CDX |d N$T |d E7B |d DEBSZ |d OCLCO |d COO |d UKMGB |d GGVRL |d YDXCP |d OCLCQ |d MERUC |d OCLCF |d OCLCQ |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d TKN |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OL$ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
016 | 7 | |a 016211114 |2 Uk | |
019 | |a 843870730 |a 847350606 |a 961638026 |a 962651267 |a 1055396622 |a 1065974604 |a 1081257931 |a 1086503672 |a 1228615891 |a 1237216921 | ||
020 | |a 9781908977106 |q (electronic bk.) | ||
020 | |a 1908977108 |q (electronic bk.) | ||
020 | |a 9781908977113 |q (electronic bk.) | ||
020 | |a 1908977116 |q (electronic bk.) | ||
020 | |z 9781908977090 | ||
020 | |z 1908977094 |q (hbk.) | ||
035 | |a (OCoLC)844311083 |z (OCoLC)843870730 |z (OCoLC)847350606 |z (OCoLC)961638026 |z (OCoLC)962651267 |z (OCoLC)1055396622 |z (OCoLC)1065974604 |z (OCoLC)1081257931 |z (OCoLC)1086503672 |z (OCoLC)1228615891 |z (OCoLC)1237216921 | ||
050 | 4 | |a QA267.7 |b .M35 2013eb | |
072 | 7 | |a COM |x 037000 |2 bisacsh | |
082 | 7 | |a 511.352 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Mainzer, Klaus. | |
245 | 1 | 0 | |a Local activity principle / |c Klaus Mainzer, Leon Chua. |
260 | |a London : |b Imperial College Press ; |a Singapore : |b Distributed by World Scientific Pub. Co., |c ©2013. | ||
300 | |a 1 online resource (xii, 443 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 409-421) and indexes. | ||
505 | 0 | |a 1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization? | |
520 | |a The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. | ||
650 | 0 | |a Computational complexity. |0 http://id.loc.gov/authorities/subjects/sh85029473 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 0 | |a Broken symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh85017032 | |
650 | 6 | |a Complexité de calcul (Informatique) | |
650 | 6 | |a Physique mathématique. | |
650 | 6 | |a Symétrie brisée (Physique) | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a Broken symmetry (Physics) |2 fast | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
700 | 1 | |a Chua, Leon O., |d 1936- |1 https://id.oclc.org/worldcat/entity/E39PBJrRbHY6ykbmyVgHqWkJjC |0 http://id.loc.gov/authorities/names/n82204052 | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a Local activity principle (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGgKHXpxwjgPdYw8j7Dj83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 9781908977090 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575390 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25218080 | ||
938 | |a Coutts Information Services |b COUT |n 25409831 | ||
938 | |a ebrary |b EBRY |n ebr10700570 | ||
938 | |a EBSCOhost |b EBSC |n 575390 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8RCY | ||
938 | |a YBP Library Services |b YANK |n 10697905 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn844311083 |
---|---|
_version_ | 1816882233203490816 |
adam_text | |
any_adam_object | |
author | Mainzer, Klaus |
author2 | Chua, Leon O., 1936- |
author2_role | |
author2_variant | l o c lo loc |
author_GND | http://id.loc.gov/authorities/names/n82204052 |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Mainzer, Klaus Chua, Leon O., 1936- World Scientific (Firm) |
author_role | |
author_sort | Mainzer, Klaus |
author_variant | k m km |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA267 |
callnumber-raw | QA267.7 .M35 2013eb |
callnumber-search | QA267.7 .M35 2013eb |
callnumber-sort | QA 3267.7 M35 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization? |
ctrlnum | (OCoLC)844311083 |
dewey-full | 511.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.352 |
dewey-search | 511.352 |
dewey-sort | 3511.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06523cam a2200661Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn844311083</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cuu|||uu|||</controlfield><controlfield tag="008">091123s2013 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2013427768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">WSPC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">HKP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CDX</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">UKMGB</subfield><subfield code="d">GGVRL</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016211114</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">843870730</subfield><subfield code="a">847350606</subfield><subfield code="a">961638026</subfield><subfield code="a">962651267</subfield><subfield code="a">1055396622</subfield><subfield code="a">1065974604</subfield><subfield code="a">1081257931</subfield><subfield code="a">1086503672</subfield><subfield code="a">1228615891</subfield><subfield code="a">1237216921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781908977106</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1908977108</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781908977113</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1908977116</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781908977090</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1908977094</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844311083</subfield><subfield code="z">(OCoLC)843870730</subfield><subfield code="z">(OCoLC)847350606</subfield><subfield code="z">(OCoLC)961638026</subfield><subfield code="z">(OCoLC)962651267</subfield><subfield code="z">(OCoLC)1055396622</subfield><subfield code="z">(OCoLC)1065974604</subfield><subfield code="z">(OCoLC)1081257931</subfield><subfield code="z">(OCoLC)1086503672</subfield><subfield code="z">(OCoLC)1228615891</subfield><subfield code="z">(OCoLC)1237216921</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA267.7</subfield><subfield code="b">.M35 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.352</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mainzer, Klaus.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local activity principle /</subfield><subfield code="c">Klaus Mainzer, Leon Chua.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Singapore :</subfield><subfield code="b">Distributed by World Scientific Pub. Co.,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 443 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 409-421) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization?</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational complexity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029473</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Broken symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85017032</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexité de calcul (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie brisée (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Broken symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chua, Leon O.,</subfield><subfield code="d">1936-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrRbHY6ykbmyVgHqWkJjC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82204052</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Local activity principle (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGgKHXpxwjgPdYw8j7Dj83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781908977090</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575390</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25218080</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25409831</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10700570</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">575390</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8RCY</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10697905</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn844311083 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:21Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9781908977106 1908977108 9781908977113 1908977116 |
language | English |
lccn | 2013427768 |
oclc_num | 844311083 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 443 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Imperial College Press ; Distributed by World Scientific Pub. Co., |
record_format | marc |
spelling | Mainzer, Klaus. Local activity principle / Klaus Mainzer, Leon Chua. London : Imperial College Press ; Singapore : Distributed by World Scientific Pub. Co., ©2013. 1 online resource (xii, 443 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 409-421) and indexes. 1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization? The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Broken symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85017032 Complexité de calcul (Informatique) Physique mathématique. Symétrie brisée (Physique) COMPUTERS Machine Theory. bisacsh Broken symmetry (Physics) fast Computational complexity fast Mathematical physics fast Chua, Leon O., 1936- https://id.oclc.org/worldcat/entity/E39PBJrRbHY6ykbmyVgHqWkJjC http://id.loc.gov/authorities/names/n82204052 World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: Local activity principle (Text) https://id.oclc.org/worldcat/entity/E39PCGgKHXpxwjgPdYw8j7Dj83 https://id.oclc.org/worldcat/ontology/hasWork 9781908977090 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575390 Volltext |
spellingShingle | Mainzer, Klaus Local activity principle / 1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization? Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Broken symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85017032 Complexité de calcul (Informatique) Physique mathématique. Symétrie brisée (Physique) COMPUTERS Machine Theory. bisacsh Broken symmetry (Physics) fast Computational complexity fast Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029473 http://id.loc.gov/authorities/subjects/sh85082129 http://id.loc.gov/authorities/subjects/sh85017032 |
title | Local activity principle / |
title_auth | Local activity principle / |
title_exact_search | Local activity principle / |
title_full | Local activity principle / Klaus Mainzer, Leon Chua. |
title_fullStr | Local activity principle / Klaus Mainzer, Leon Chua. |
title_full_unstemmed | Local activity principle / Klaus Mainzer, Leon Chua. |
title_short | Local activity principle / |
title_sort | local activity principle |
topic | Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Broken symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85017032 Complexité de calcul (Informatique) Physique mathématique. Symétrie brisée (Physique) COMPUTERS Machine Theory. bisacsh Broken symmetry (Physics) fast Computational complexity fast Mathematical physics fast |
topic_facet | Computational complexity. Mathematical physics. Broken symmetry (Physics) Complexité de calcul (Informatique) Physique mathématique. Symétrie brisée (Physique) COMPUTERS Machine Theory. Computational complexity Mathematical physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575390 |
work_keys_str_mv | AT mainzerklaus localactivityprinciple AT chualeono localactivityprinciple AT worldscientificfirm localactivityprinciple |