Navier-Stokes equations in planar domains /:
This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test pr...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Singapore :
Imperial College Press ; Distributed by World Scientific Pub. Co.,
©2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics. |
Beschreibung: | 1 online resource (xii, 302 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 287-297) and index. |
ISBN: | 9781848162761 1848162766 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn844311053 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 091123s2013 enka ob 001 0 eng d | ||
040 | |a WSPC |b eng |e pn |c STF |d YDXCP |d IDEBK |d N$T |d GPM |d E7B |d OCLCF |d GGVRL |d OCLCQ |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d OCLCQ |d U3W |d STF |d VTS |d INT |d OCLCQ |d M8D |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 961606202 |a 962581122 |a 988430559 |a 991954274 | ||
020 | |a 9781848162761 |q (electronic bk.) | ||
020 | |a 1848162766 |q (electronic bk.) | ||
020 | |z 9781848162754 | ||
035 | |a (OCoLC)844311053 |z (OCoLC)961606202 |z (OCoLC)962581122 |z (OCoLC)988430559 |z (OCoLC)991954274 | ||
050 | 4 | |a QA374 |b .B46 2013 | |
072 | 7 | |a SCI |x 085000 |2 bisacsh | |
082 | 7 | |a 532.05201515353 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ben-Artzi, Matania, |d 1948- |1 https://id.oclc.org/worldcat/entity/E39PCjHwrMbrg8qkcfdTMMGd73 |0 http://id.loc.gov/authorities/names/n85275158 | |
245 | 1 | 0 | |a Navier-Stokes equations in planar domains / |c Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. |
260 | |a London : |b Imperial College Press ; |a Singapore : |b Distributed by World Scientific Pub. Co., |c ©2013. | ||
300 | |a 1 online resource (xii, 302 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 287-297) and index. | ||
505 | 0 | |a pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14. | |
520 | |a This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics. | ||
650 | 0 | |a Navier-Stokes equations. |0 http://id.loc.gov/authorities/subjects/sh85090420 | |
650 | 6 | |a Équations de Navier-Stokes. | |
650 | 7 | |a SCIENCE |x Mechanics |x Fluids. |2 bisacsh | |
650 | 7 | |a Navier-Stokes equations |2 fast | |
700 | 1 | |a Croisille, Jean-Pierre, |d 1961- |1 https://id.oclc.org/worldcat/entity/E39PBJc7X6jF8jTmjcrDj44H4q |0 http://id.loc.gov/authorities/names/n99256576 | |
700 | 1 | |a Fishelov, Dalia. | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a Navier-Stokes equations in planar domains (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFHDHqkB74crBDKhTFwmbd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |b en-Artzi, Matania, 1948- |t Navier-Stokes equations in planar domains. |d London ; Hackensack, NJ : Imperial College Press, ©2013 |z 9781848162754 |w (DLC) 2013427793 |w (OCoLC)824183287 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592580 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26869407 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25272106 | ||
938 | |a ebrary |b EBRY |n ebr10719524 | ||
938 | |a EBSCOhost |b EBSC |n 592580 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8QYD | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25645536 | ||
938 | |a YBP Library Services |b YANK |n 10752353 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn844311053 |
---|---|
_version_ | 1816882233179373569 |
adam_text | |
any_adam_object | |
author | Ben-Artzi, Matania, 1948- |
author2 | Croisille, Jean-Pierre, 1961- Fishelov, Dalia |
author2_role | |
author2_variant | j p c jpc d f df |
author_GND | http://id.loc.gov/authorities/names/n85275158 http://id.loc.gov/authorities/names/n99256576 |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Ben-Artzi, Matania, 1948- Croisille, Jean-Pierre, 1961- Fishelov, Dalia World Scientific (Firm) |
author_role | |
author_sort | Ben-Artzi, Matania, 1948- |
author_variant | m b a mba |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA374 |
callnumber-raw | QA374 .B46 2013 |
callnumber-search | QA374 .B46 2013 |
callnumber-sort | QA 3374 B46 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14. |
ctrlnum | (OCoLC)844311053 |
dewey-full | 532.05201515353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532.05201515353 |
dewey-search | 532.05201515353 |
dewey-sort | 3532.05201515353 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06976cam a2200553Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn844311053</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">091123s2013 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">WSPC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">GPM</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">GGVRL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961606202</subfield><subfield code="a">962581122</subfield><subfield code="a">988430559</subfield><subfield code="a">991954274</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162761</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848162766</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848162754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844311053</subfield><subfield code="z">(OCoLC)961606202</subfield><subfield code="z">(OCoLC)962581122</subfield><subfield code="z">(OCoLC)988430559</subfield><subfield code="z">(OCoLC)991954274</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA374</subfield><subfield code="b">.B46 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">085000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">532.05201515353</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ben-Artzi, Matania,</subfield><subfield code="d">1948-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHwrMbrg8qkcfdTMMGd73</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85275158</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Navier-Stokes equations in planar domains /</subfield><subfield code="c">Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Singapore :</subfield><subfield code="b">Distributed by World Scientific Pub. Co.,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 302 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 287-297) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Navier-Stokes equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85090420</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations de Navier-Stokes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Fluids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Navier-Stokes equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Croisille, Jean-Pierre,</subfield><subfield code="d">1961-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJc7X6jF8jTmjcrDj44H4q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99256576</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fishelov, Dalia.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Navier-Stokes equations in planar domains (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFHDHqkB74crBDKhTFwmbd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="b">en-Artzi, Matania, 1948-</subfield><subfield code="t">Navier-Stokes equations in planar domains.</subfield><subfield code="d">London ; Hackensack, NJ : Imperial College Press, ©2013</subfield><subfield code="z">9781848162754</subfield><subfield code="w">(DLC) 2013427793</subfield><subfield code="w">(OCoLC)824183287</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592580</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26869407</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25272106</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10719524</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">592580</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8QYD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25645536</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10752353</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn844311053 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:21Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9781848162761 1848162766 |
language | English |
oclc_num | 844311053 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 302 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Imperial College Press ; Distributed by World Scientific Pub. Co., |
record_format | marc |
spelling | Ben-Artzi, Matania, 1948- https://id.oclc.org/worldcat/entity/E39PCjHwrMbrg8qkcfdTMMGd73 http://id.loc.gov/authorities/names/n85275158 Navier-Stokes equations in planar domains / Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. London : Imperial College Press ; Singapore : Distributed by World Scientific Pub. Co., ©2013. 1 online resource (xii, 302 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 287-297) and index. pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14. This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics. Navier-Stokes equations. http://id.loc.gov/authorities/subjects/sh85090420 Équations de Navier-Stokes. SCIENCE Mechanics Fluids. bisacsh Navier-Stokes equations fast Croisille, Jean-Pierre, 1961- https://id.oclc.org/worldcat/entity/E39PBJc7X6jF8jTmjcrDj44H4q http://id.loc.gov/authorities/names/n99256576 Fishelov, Dalia. World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: Navier-Stokes equations in planar domains (Text) https://id.oclc.org/worldcat/entity/E39PCFHDHqkB74crBDKhTFwmbd https://id.oclc.org/worldcat/ontology/hasWork Print version: en-Artzi, Matania, 1948- Navier-Stokes equations in planar domains. London ; Hackensack, NJ : Imperial College Press, ©2013 9781848162754 (DLC) 2013427793 (OCoLC)824183287 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592580 Volltext |
spellingShingle | Ben-Artzi, Matania, 1948- Navier-Stokes equations in planar domains / pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14. Navier-Stokes equations. http://id.loc.gov/authorities/subjects/sh85090420 Équations de Navier-Stokes. SCIENCE Mechanics Fluids. bisacsh Navier-Stokes equations fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85090420 |
title | Navier-Stokes equations in planar domains / |
title_auth | Navier-Stokes equations in planar domains / |
title_exact_search | Navier-Stokes equations in planar domains / |
title_full | Navier-Stokes equations in planar domains / Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. |
title_fullStr | Navier-Stokes equations in planar domains / Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. |
title_full_unstemmed | Navier-Stokes equations in planar domains / Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. |
title_short | Navier-Stokes equations in planar domains / |
title_sort | navier stokes equations in planar domains |
topic | Navier-Stokes equations. http://id.loc.gov/authorities/subjects/sh85090420 Équations de Navier-Stokes. SCIENCE Mechanics Fluids. bisacsh Navier-Stokes equations fast |
topic_facet | Navier-Stokes equations. Équations de Navier-Stokes. SCIENCE Mechanics Fluids. Navier-Stokes equations |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592580 |
work_keys_str_mv | AT benartzimatania navierstokesequationsinplanardomains AT croisillejeanpierre navierstokesequationsinplanardomains AT fishelovdalia navierstokesequationsinplanardomains AT worldscientificfirm navierstokesequationsinplanardomains |