Functional calculi /:
A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the s...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore :
World Scientific,
©2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space. This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint operators and an extension to normal operators. The Riesz operational calculus based on the Cauchy integral theorem from complex analysis is also described. Finally, an exposition of a functional calculus due to H. Weyl is given. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814415989 9814415987 9789814415996 9814415995 1299556434 9781299556430 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn843872845 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 130521s2013 si ob 001 0 eng d | ||
040 | |a HKP |b eng |e pn |c HKP |d IDEBK |d OCLCO |d STF |d E7B |d DEBSZ |d N$T |d CDX |d YDXCP |d GGVRL |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d AGLDB |d MOR |d CCO |d PIFPO |d ZCU |d MERUC |d OCLCQ |d JBG |d OCLCQ |d U3W |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCO |d QGK |d S2H |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 842882082 |a 961671268 |a 962590735 |a 1259218636 |a 1289518849 | ||
020 | |a 9789814415989 |q (electronic bk.) | ||
020 | |a 9814415987 |q (electronic bk.) | ||
020 | |a 9789814415996 |q (electronic bk.) | ||
020 | |a 9814415995 |q (electronic bk.) | ||
020 | |a 1299556434 |q (electronic bk.) | ||
020 | |a 9781299556430 |q (electronic bk.) | ||
020 | |z 9789814415972 |q (hbk.) | ||
020 | |z 9814415979 |q (hbk.) | ||
035 | |a (OCoLC)843872845 |z (OCoLC)842882082 |z (OCoLC)961671268 |z (OCoLC)962590735 |z (OCoLC)1259218636 |z (OCoLC)1289518849 | ||
037 | |a 486893 |b MIL | ||
050 | 4 | |a QA320 |b .B67 2013eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 | |
049 | |a MAIN | ||
100 | 1 | |a Bosch, Carlos. | |
245 | 1 | 0 | |a Functional calculi / |c Carlos Bosch, Charles Swartz. |
260 | |a Singapore : |b World Scientific, |c ©2013. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a 1. Vector and operator valued measures. 1.1. Vector measures. 1.2. Operator valued measures. 1.3. Extensions of measures. 1.4. Regularity and countable additivity. 1.5. Countable additivity on products -- 2. Functions of a self adjoint operator -- 3. Functions of several commuting self adjoint operators -- 4. The spectral theorem for normal operators -- 5. Integrating vector valued functions. 5.1. Vector valued measurable functions. 5.2. Integrating vector valued functions -- 6. An abstract functional calculus -- 7. The Riesz operational calculus. 7.1. Power series. 7.2. Laurent series. 7.3. Runge's theorem. 7.4. Several complex variables. 7.5. Riesz operational calculus. 7.6. Abstract functional calculus. 7.7. Spectral sets. 7.8. Isolated points. 7.9. Wiener's theorem -- 8. Weyl's functional calculus. | |
520 | |a A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space. This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint operators and an extension to normal operators. The Riesz operational calculus based on the Cauchy integral theorem from complex analysis is also described. Finally, an exposition of a functional calculus due to H. Weyl is given. | ||
504 | |a Includes bibliographical references and index. | ||
546 | |a English. | ||
650 | 0 | |a Functional analysis. |0 http://id.loc.gov/authorities/subjects/sh85052312 | |
650 | 0 | |a Calculus. |0 http://id.loc.gov/authorities/subjects/sh85018802 | |
650 | 0 | |a Mathematics. |0 http://id.loc.gov/authorities/subjects/sh85082139 | |
650 | 6 | |a Analyse fonctionnelle. | |
650 | 6 | |a Calcul infinitésimal. | |
650 | 6 | |a Mathématiques. | |
650 | 7 | |a calculus. |2 aat | |
650 | 7 | |a mathematics. |2 aat | |
650 | 7 | |a applied mathematics. |2 aat | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Functional analysis |2 fast | |
700 | 1 | |a Swartz, Charles. | |
758 | |i has work: |a Functional calculi (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFyqKqWpYcYvKGrvpr96fC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814415972 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575396 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26871429 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25243955 | ||
938 | |a Coutts Information Services |b COUT |n 25409835 | ||
938 | |a ebrary |b EBRY |n ebr10700503 | ||
938 | |a EBSCOhost |b EBSC |n 575396 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8RIZ | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25409835 | ||
938 | |a YBP Library Services |b YANK |n 10697956 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn843872845 |
---|---|
_version_ | 1816882232885772288 |
adam_text | |
any_adam_object | |
author | Bosch, Carlos |
author2 | Swartz, Charles |
author2_role | |
author2_variant | c s cs |
author_facet | Bosch, Carlos Swartz, Charles |
author_role | |
author_sort | Bosch, Carlos |
author_variant | c b cb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA320 |
callnumber-raw | QA320 .B67 2013eb |
callnumber-search | QA320 .B67 2013eb |
callnumber-sort | QA 3320 B67 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Vector and operator valued measures. 1.1. Vector measures. 1.2. Operator valued measures. 1.3. Extensions of measures. 1.4. Regularity and countable additivity. 1.5. Countable additivity on products -- 2. Functions of a self adjoint operator -- 3. Functions of several commuting self adjoint operators -- 4. The spectral theorem for normal operators -- 5. Integrating vector valued functions. 5.1. Vector valued measurable functions. 5.2. Integrating vector valued functions -- 6. An abstract functional calculus -- 7. The Riesz operational calculus. 7.1. Power series. 7.2. Laurent series. 7.3. Runge's theorem. 7.4. Several complex variables. 7.5. Riesz operational calculus. 7.6. Abstract functional calculus. 7.7. Spectral sets. 7.8. Isolated points. 7.9. Wiener's theorem -- 8. Weyl's functional calculus. |
ctrlnum | (OCoLC)843872845 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04771cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn843872845</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">130521s2013 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">HKP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">HKP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">GGVRL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFPO</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">842882082</subfield><subfield code="a">961671268</subfield><subfield code="a">962590735</subfield><subfield code="a">1259218636</subfield><subfield code="a">1289518849</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814415989</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814415987</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814415996</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814415995</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299556434</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299556430</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814415972</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814415979</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)843872845</subfield><subfield code="z">(OCoLC)842882082</subfield><subfield code="z">(OCoLC)961671268</subfield><subfield code="z">(OCoLC)962590735</subfield><subfield code="z">(OCoLC)1259218636</subfield><subfield code="z">(OCoLC)1289518849</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">486893</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA320</subfield><subfield code="b">.B67 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bosch, Carlos.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional calculi /</subfield><subfield code="c">Carlos Bosch, Charles Swartz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Vector and operator valued measures. 1.1. Vector measures. 1.2. Operator valued measures. 1.3. Extensions of measures. 1.4. Regularity and countable additivity. 1.5. Countable additivity on products -- 2. Functions of a self adjoint operator -- 3. Functions of several commuting self adjoint operators -- 4. The spectral theorem for normal operators -- 5. Integrating vector valued functions. 5.1. Vector valued measurable functions. 5.2. Integrating vector valued functions -- 6. An abstract functional calculus -- 7. The Riesz operational calculus. 7.1. Power series. 7.2. Laurent series. 7.3. Runge's theorem. 7.4. Several complex variables. 7.5. Riesz operational calculus. 7.6. Abstract functional calculus. 7.7. Spectral sets. 7.8. Isolated points. 7.9. Wiener's theorem -- 8. Weyl's functional calculus.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space. This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint operators and an extension to normal operators. The Riesz operational calculus based on the Cauchy integral theorem from complex analysis is also described. Finally, an exposition of a functional calculus due to H. Weyl is given.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functional analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052312</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018802</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082139</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse fonctionnelle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul infinitésimal.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">calculus.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mathematics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">applied mathematics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swartz, Charles.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Functional calculi (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFyqKqWpYcYvKGrvpr96fC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814415972</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575396</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26871429</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25243955</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25409835</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10700503</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">575396</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8RIZ</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25409835</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10697956</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn843872845 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:21Z |
institution | BVB |
isbn | 9789814415989 9814415987 9789814415996 9814415995 1299556434 9781299556430 |
language | English |
oclc_num | 843872845 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific, |
record_format | marc |
spelling | Bosch, Carlos. Functional calculi / Carlos Bosch, Charles Swartz. Singapore : World Scientific, ©2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier 1. Vector and operator valued measures. 1.1. Vector measures. 1.2. Operator valued measures. 1.3. Extensions of measures. 1.4. Regularity and countable additivity. 1.5. Countable additivity on products -- 2. Functions of a self adjoint operator -- 3. Functions of several commuting self adjoint operators -- 4. The spectral theorem for normal operators -- 5. Integrating vector valued functions. 5.1. Vector valued measurable functions. 5.2. Integrating vector valued functions -- 6. An abstract functional calculus -- 7. The Riesz operational calculus. 7.1. Power series. 7.2. Laurent series. 7.3. Runge's theorem. 7.4. Several complex variables. 7.5. Riesz operational calculus. 7.6. Abstract functional calculus. 7.7. Spectral sets. 7.8. Isolated points. 7.9. Wiener's theorem -- 8. Weyl's functional calculus. A functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space. This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint operators and an extension to normal operators. The Riesz operational calculus based on the Cauchy integral theorem from complex analysis is also described. Finally, an exposition of a functional calculus due to H. Weyl is given. Includes bibliographical references and index. English. Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Analyse fonctionnelle. Calcul infinitésimal. Mathématiques. calculus. aat mathematics. aat applied mathematics. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functional analysis fast Swartz, Charles. has work: Functional calculi (Text) https://id.oclc.org/worldcat/entity/E39PCFyqKqWpYcYvKGrvpr96fC https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814415972 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575396 Volltext |
spellingShingle | Bosch, Carlos Functional calculi / 1. Vector and operator valued measures. 1.1. Vector measures. 1.2. Operator valued measures. 1.3. Extensions of measures. 1.4. Regularity and countable additivity. 1.5. Countable additivity on products -- 2. Functions of a self adjoint operator -- 3. Functions of several commuting self adjoint operators -- 4. The spectral theorem for normal operators -- 5. Integrating vector valued functions. 5.1. Vector valued measurable functions. 5.2. Integrating vector valued functions -- 6. An abstract functional calculus -- 7. The Riesz operational calculus. 7.1. Power series. 7.2. Laurent series. 7.3. Runge's theorem. 7.4. Several complex variables. 7.5. Riesz operational calculus. 7.6. Abstract functional calculus. 7.7. Spectral sets. 7.8. Isolated points. 7.9. Wiener's theorem -- 8. Weyl's functional calculus. Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Analyse fonctionnelle. Calcul infinitésimal. Mathématiques. calculus. aat mathematics. aat applied mathematics. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functional analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052312 http://id.loc.gov/authorities/subjects/sh85018802 http://id.loc.gov/authorities/subjects/sh85082139 |
title | Functional calculi / |
title_auth | Functional calculi / |
title_exact_search | Functional calculi / |
title_full | Functional calculi / Carlos Bosch, Charles Swartz. |
title_fullStr | Functional calculi / Carlos Bosch, Charles Swartz. |
title_full_unstemmed | Functional calculi / Carlos Bosch, Charles Swartz. |
title_short | Functional calculi / |
title_sort | functional calculi |
topic | Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Analyse fonctionnelle. Calcul infinitésimal. Mathématiques. calculus. aat mathematics. aat applied mathematics. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functional analysis fast |
topic_facet | Functional analysis. Calculus. Mathematics. Analyse fonctionnelle. Calcul infinitésimal. Mathématiques. calculus. mathematics. applied mathematics. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Functional analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575396 |
work_keys_str_mv | AT boschcarlos functionalcalculi AT swartzcharles functionalcalculi |