General theory of lie groupoids and lie algebroids /:
This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
2005.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
213. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids. |
Beschreibung: | 1 online resource (xxxv, 501 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 479-495) and index. |
ISBN: | 9781107325883 1107325889 9781107088870 1107088879 1107100690 9781107100695 1107095034 9781107095038 1107103177 9781107103177 1107091756 9781107091757 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn841393151 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130501s2005 enka fob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d IDEBK |d OCLCF |d YDXCP |d N$T |d OCLCQ |d YDX |d OCLCQ |d UAB |d OCLCQ |d UKAHL |d OCLCQ |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 985246650 |a 985372565 |a 1259112884 |a 1266874509 | ||
020 | |a 9781107325883 |q (electronic bk.) | ||
020 | |a 1107325889 |q (electronic bk.) | ||
020 | |a 9781107088870 |q (electronic bk.) | ||
020 | |a 1107088879 |q (electronic bk.) | ||
020 | |z 0521499283 | ||
020 | |z 9780521499286 | ||
020 | |a 1107100690 | ||
020 | |a 9781107100695 | ||
020 | |a 1107095034 | ||
020 | |a 9781107095038 | ||
020 | |a 1107103177 | ||
020 | |a 9781107103177 | ||
020 | |a 1107091756 | ||
020 | |a 9781107091757 | ||
024 | 3 | |z 9780521499283 |q (pbk.) | |
035 | |a (OCoLC)841393151 |z (OCoLC)985246650 |z (OCoLC)985372565 |z (OCoLC)1259112884 |z (OCoLC)1266874509 | ||
050 | 4 | |a QA649 |b .M329 2005eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.482 |2 22 | |
084 | |a 31.30 |2 bcl | ||
084 | |a 31.51 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Mackenzie, K. |q (Kirill) |1 https://id.oclc.org/worldcat/entity/E39PCjx7XtQVwYqc9736H8xQjd |0 http://id.loc.gov/authorities/names/n86036454 | |
245 | 1 | 0 | |a General theory of lie groupoids and lie algebroids / |c Kirill C.H. Mackenzie. |
246 | 3 | 0 | |a Lie groupoids and lie algebroids |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 2005. | ||
300 | |a 1 online resource (xxxv, 501 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 213 | |
504 | |a Includes bibliographical references (pages 479-495) and index. | ||
505 | 0 | 0 | |g 1. |t Lie groupoids : fundamental theory -- |g 2. |t Lie groupoids : algebraic constructions -- |g 3. |t Lie algebroids : fundamental theory -- |g 4. |t Lie algebroids : algebraic constructions -- |g 5. |t Infinitesimal connection theory -- |g 6. |t Path connections and lie theory -- |g 7. |t Cohomology and Schouten calculus -- |g 8. |t The cohomological obstruction -- |g 9. |t Double vector bundles -- |g 10. |t Poisson structures and lie algebroids -- |g 11. |t Poisson and symplectic groupoids -- |g 12. |t Lie bialgebroids. |
588 | 0 | |a Print version record. | |
520 | |a This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids. | ||
546 | |a English. | ||
650 | 0 | |a Lie groupoids. |0 http://id.loc.gov/authorities/subjects/sh87001681 | |
650 | 0 | |a Lie algebroids. |0 http://id.loc.gov/authorities/subjects/sh87001680 | |
650 | 0 | |a Vector bundles. |0 http://id.loc.gov/authorities/subjects/sh85142450 | |
650 | 0 | |a Connections (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85031181 | |
650 | 6 | |a Lie, Groupoïdes de. | |
650 | 6 | |a Algébroïdes de Lie. | |
650 | 6 | |a Fibrés vectoriels. | |
650 | 6 | |a Connections (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Connections (Mathematics) |2 fast | |
650 | 7 | |a Lie algebroids |2 fast | |
650 | 7 | |a Lie groupoids |2 fast | |
650 | 7 | |a Vector bundles |2 fast | |
650 | 1 | 7 | |a Lie-groepen. |2 gtt |
650 | 1 | 7 | |a Lie-algebra's. |2 gtt |
710 | 2 | |a London Mathematical Society. |0 http://id.loc.gov/authorities/names/n79118957 | |
758 | |i has work: |a General theory of lie groupoids and lie algebroids (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG9K7C9JPPVt4JX9Gx6K7d |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Mackenzie, K. (Kirill). |t General theory of lie groupoids and lie algebroids. |d Cambridge [England] ; New York : Cambridge University Press, 2005 |z 0521499283 |w (DLC) 2005296814 |w (OCoLC)58051681 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 213. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569280 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25052485 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385368 | ||
938 | |a EBSCOhost |b EBSC |n 569280 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25780810 | ||
938 | |a YBP Library Services |b YANK |n 10760947 | ||
938 | |a YBP Library Services |b YANK |n 10440791 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn841393151 |
---|---|
_version_ | 1816882231586586624 |
adam_text | |
any_adam_object | |
author | Mackenzie, K. (Kirill) |
author_GND | http://id.loc.gov/authorities/names/n86036454 |
author_corporate | London Mathematical Society |
author_corporate_role | |
author_facet | Mackenzie, K. (Kirill) London Mathematical Society |
author_role | |
author_sort | Mackenzie, K. |
author_variant | k m km |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .M329 2005eb |
callnumber-search | QA649 .M329 2005eb |
callnumber-sort | QA 3649 M329 42005EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Lie groupoids : fundamental theory -- Lie groupoids : algebraic constructions -- Lie algebroids : fundamental theory -- Lie algebroids : algebraic constructions -- Infinitesimal connection theory -- Path connections and lie theory -- Cohomology and Schouten calculus -- The cohomological obstruction -- Double vector bundles -- Poisson structures and lie algebroids -- Poisson and symplectic groupoids -- Lie bialgebroids. |
ctrlnum | (OCoLC)841393151 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05196cam a2200877 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn841393151</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130501s2005 enka fob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">985246650</subfield><subfield code="a">985372565</subfield><subfield code="a">1259112884</subfield><subfield code="a">1266874509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325883</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107325889</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088870</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088879</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521499283</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521499286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107100690</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107100695</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107095034</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107095038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107103177</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107103177</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107091756</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107091757</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="z">9780521499283</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)841393151</subfield><subfield code="z">(OCoLC)985246650</subfield><subfield code="z">(OCoLC)985372565</subfield><subfield code="z">(OCoLC)1259112884</subfield><subfield code="z">(OCoLC)1266874509</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.M329 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.30</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.51</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mackenzie, K.</subfield><subfield code="q">(Kirill)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjx7XtQVwYqc9736H8xQjd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86036454</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General theory of lie groupoids and lie algebroids /</subfield><subfield code="c">Kirill C.H. Mackenzie.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Lie groupoids and lie algebroids</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxv, 501 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">213</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 479-495) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Lie groupoids : fundamental theory --</subfield><subfield code="g">2.</subfield><subfield code="t">Lie groupoids : algebraic constructions --</subfield><subfield code="g">3.</subfield><subfield code="t">Lie algebroids : fundamental theory --</subfield><subfield code="g">4.</subfield><subfield code="t">Lie algebroids : algebraic constructions --</subfield><subfield code="g">5.</subfield><subfield code="t">Infinitesimal connection theory --</subfield><subfield code="g">6.</subfield><subfield code="t">Path connections and lie theory --</subfield><subfield code="g">7.</subfield><subfield code="t">Cohomology and Schouten calculus --</subfield><subfield code="g">8.</subfield><subfield code="t">The cohomological obstruction --</subfield><subfield code="g">9.</subfield><subfield code="t">Double vector bundles --</subfield><subfield code="g">10.</subfield><subfield code="t">Poisson structures and lie algebroids --</subfield><subfield code="g">11.</subfield><subfield code="t">Poisson and symplectic groupoids --</subfield><subfield code="g">12.</subfield><subfield code="t">Lie bialgebroids.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groupoids.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87001681</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebroids.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87001680</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vector bundles.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142450</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Connections (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031181</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Lie, Groupoïdes de.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algébroïdes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fibrés vectoriels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Connections (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Connections (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebroids</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groupoids</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector bundles</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lie-groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lie-algebra's.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79118957</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">General theory of lie groupoids and lie algebroids (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG9K7C9JPPVt4JX9Gx6K7d</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mackenzie, K. (Kirill).</subfield><subfield code="t">General theory of lie groupoids and lie algebroids.</subfield><subfield code="d">Cambridge [England] ; New York : Cambridge University Press, 2005</subfield><subfield code="z">0521499283</subfield><subfield code="w">(DLC) 2005296814</subfield><subfield code="w">(OCoLC)58051681</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">213.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569280</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25052485</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385368</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569280</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25780810</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10760947</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10440791</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn841393151 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:19Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n79118957 |
isbn | 9781107325883 1107325889 9781107088870 1107088879 1107100690 9781107100695 1107095034 9781107095038 1107103177 9781107103177 1107091756 9781107091757 |
language | English |
oclc_num | 841393151 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxv, 501 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Mackenzie, K. (Kirill) https://id.oclc.org/worldcat/entity/E39PCjx7XtQVwYqc9736H8xQjd http://id.loc.gov/authorities/names/n86036454 General theory of lie groupoids and lie algebroids / Kirill C.H. Mackenzie. Lie groupoids and lie algebroids Cambridge [England] ; New York : Cambridge University Press, 2005. 1 online resource (xxxv, 501 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 213 Includes bibliographical references (pages 479-495) and index. 1. Lie groupoids : fundamental theory -- 2. Lie groupoids : algebraic constructions -- 3. Lie algebroids : fundamental theory -- 4. Lie algebroids : algebraic constructions -- 5. Infinitesimal connection theory -- 6. Path connections and lie theory -- 7. Cohomology and Schouten calculus -- 8. The cohomological obstruction -- 9. Double vector bundles -- 10. Poisson structures and lie algebroids -- 11. Poisson and symplectic groupoids -- 12. Lie bialgebroids. Print version record. This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids. English. Lie groupoids. http://id.loc.gov/authorities/subjects/sh87001681 Lie algebroids. http://id.loc.gov/authorities/subjects/sh87001680 Vector bundles. http://id.loc.gov/authorities/subjects/sh85142450 Connections (Mathematics) http://id.loc.gov/authorities/subjects/sh85031181 Lie, Groupoïdes de. Algébroïdes de Lie. Fibrés vectoriels. Connections (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh Connections (Mathematics) fast Lie algebroids fast Lie groupoids fast Vector bundles fast Lie-groepen. gtt Lie-algebra's. gtt London Mathematical Society. http://id.loc.gov/authorities/names/n79118957 has work: General theory of lie groupoids and lie algebroids (Text) https://id.oclc.org/worldcat/entity/E39PCG9K7C9JPPVt4JX9Gx6K7d https://id.oclc.org/worldcat/ontology/hasWork Print version: Mackenzie, K. (Kirill). General theory of lie groupoids and lie algebroids. Cambridge [England] ; New York : Cambridge University Press, 2005 0521499283 (DLC) 2005296814 (OCoLC)58051681 London Mathematical Society lecture note series ; 213. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569280 Volltext |
spellingShingle | Mackenzie, K. (Kirill) General theory of lie groupoids and lie algebroids / London Mathematical Society lecture note series ; Lie groupoids : fundamental theory -- Lie groupoids : algebraic constructions -- Lie algebroids : fundamental theory -- Lie algebroids : algebraic constructions -- Infinitesimal connection theory -- Path connections and lie theory -- Cohomology and Schouten calculus -- The cohomological obstruction -- Double vector bundles -- Poisson structures and lie algebroids -- Poisson and symplectic groupoids -- Lie bialgebroids. Lie groupoids. http://id.loc.gov/authorities/subjects/sh87001681 Lie algebroids. http://id.loc.gov/authorities/subjects/sh87001680 Vector bundles. http://id.loc.gov/authorities/subjects/sh85142450 Connections (Mathematics) http://id.loc.gov/authorities/subjects/sh85031181 Lie, Groupoïdes de. Algébroïdes de Lie. Fibrés vectoriels. Connections (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh Connections (Mathematics) fast Lie algebroids fast Lie groupoids fast Vector bundles fast Lie-groepen. gtt Lie-algebra's. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh87001681 http://id.loc.gov/authorities/subjects/sh87001680 http://id.loc.gov/authorities/subjects/sh85142450 http://id.loc.gov/authorities/subjects/sh85031181 |
title | General theory of lie groupoids and lie algebroids / |
title_alt | Lie groupoids and lie algebroids Lie groupoids : fundamental theory -- Lie groupoids : algebraic constructions -- Lie algebroids : fundamental theory -- Lie algebroids : algebraic constructions -- Infinitesimal connection theory -- Path connections and lie theory -- Cohomology and Schouten calculus -- The cohomological obstruction -- Double vector bundles -- Poisson structures and lie algebroids -- Poisson and symplectic groupoids -- Lie bialgebroids. |
title_auth | General theory of lie groupoids and lie algebroids / |
title_exact_search | General theory of lie groupoids and lie algebroids / |
title_full | General theory of lie groupoids and lie algebroids / Kirill C.H. Mackenzie. |
title_fullStr | General theory of lie groupoids and lie algebroids / Kirill C.H. Mackenzie. |
title_full_unstemmed | General theory of lie groupoids and lie algebroids / Kirill C.H. Mackenzie. |
title_short | General theory of lie groupoids and lie algebroids / |
title_sort | general theory of lie groupoids and lie algebroids |
topic | Lie groupoids. http://id.loc.gov/authorities/subjects/sh87001681 Lie algebroids. http://id.loc.gov/authorities/subjects/sh87001680 Vector bundles. http://id.loc.gov/authorities/subjects/sh85142450 Connections (Mathematics) http://id.loc.gov/authorities/subjects/sh85031181 Lie, Groupoïdes de. Algébroïdes de Lie. Fibrés vectoriels. Connections (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh Connections (Mathematics) fast Lie algebroids fast Lie groupoids fast Vector bundles fast Lie-groepen. gtt Lie-algebra's. gtt |
topic_facet | Lie groupoids. Lie algebroids. Vector bundles. Connections (Mathematics) Lie, Groupoïdes de. Algébroïdes de Lie. Fibrés vectoriels. Connections (Mathématiques) MATHEMATICS Algebra Intermediate. Lie algebroids Lie groupoids Vector bundles Lie-groepen. Lie-algebra's. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569280 |
work_keys_str_mv | AT mackenziek generaltheoryofliegroupoidsandliealgebroids AT londonmathematicalsociety generaltheoryofliegroupoidsandliealgebroids AT mackenziek liegroupoidsandliealgebroids AT londonmathematicalsociety liegroupoidsandliealgebroids |