Number theory and dynamical systems /:
This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability o...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge ; New York :
Cambridge University Press,
1989.
|
Series: | London Mathematical Society lecture note series ;
134. |
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems. |
Item Description: | Contributions from a meeting held at the University of York, March 30-April 15, 1987. |
Physical Description: | 1 online resource (172 pages) : illustrations |
Bibliography: | Includes bibliographical references. |
ISBN: | 9781107361553 1107361559 9780511661983 0511661983 |
Staff View
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839544128 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130416s1989 enka ob 100 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d OCLCO |d YDXCP |d OCL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d OCL |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 715181929 | ||
020 | |a 9781107361553 |q (electronic bk.) | ||
020 | |a 1107361559 |q (electronic bk.) | ||
020 | |a 9780511661983 |q (e-book) | ||
020 | |a 0511661983 |q (e-book) | ||
020 | |z 0521369193 | ||
020 | |z 9780521369190 | ||
020 | |z 9521369193 | ||
035 | |a (OCoLC)839544128 |z (OCoLC)715181929 | ||
050 | 4 | |a QA241 |b .N8672 1989eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512/.7 |2 22 | |
084 | |a 31.55 |2 bcl | ||
084 | |a 31.14 |2 bcl | ||
084 | |a *00Bxx |2 msc | ||
084 | |a 11-06 |2 msc | ||
084 | |a 58-06 |2 msc | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Number theory and dynamical systems / |c edited by M.M. Dodson, J.A.G. Vickers. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1989. | ||
300 | |a 1 online resource (172 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 134 | |
500 | |a Contributions from a meeting held at the University of York, March 30-April 15, 1987. | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Contributors; Introduction; References; 1 Non-degeneracy in the perturbation theory of integrable dynamical systems; 1. The Problem; 2. A general non-degeneracy condition; 3. Formulation of the existence theorem; 4. Lower dimensional invariant tori; 5. The twist mapping theorem; References; 2 Infinite dimensional inverse function theorems and small divisors; 1. Introduction.; 2. Stability under Group Actions; 3. Linearisation and Newton's tangent method.; 4. The infinite dimensional case: finite orderand G-stability | |
505 | 8 | |a 5. Finite order, small divisors and exceptionalsets6. Coflnite G-stability; 7. Normal forms and Siegel's Theorem; 8. References; 3 Metric Diophantine approximation of quadratic forms; 1. Introduction; References; 4 Symbolic dynamics and Diophantine equations; 1. The problems; 2. The Proofs; References; 5 On badly approximable numbers, Schmidt games and bounded orbits of flows; 1. Introduction; 2. Bounded geodesies and horocycles; 3. Anosov flows; 4. Flows on SL(n, R)/SL(n, Z); 5. The Schmidt game; 6, Examples of winning sets in Rn; 7, Back to bounded geodesies | |
505 | 8 | |a 8. Comments on the proofs of other results9. Bounded orbits and simultaneous Diophantine approximation; 10. Miscellaneous comments and questions; 11. References; 6 Estimates for Fourier coefficients of cusp forms; 1. Introduction; 2. Estimation of Satake parameters; 3. Modified Rankin-Selberg method; 4. References; 7 The integral geometry of fractals; 1. Fractals; 2. Integral Geometry; 3. Towards Inequality A; 4. Towards inequality B; 5. Applications to Brownian Motion; 6. Sets with large intersection; 7. References; 8 Geometry of algebraiccontinued fractals; 1. Introduction | |
505 | 8 | |a 2. Quadratic continued fractals. 3. Applications to dynamical systems.; 4. Appendix; 5. References; 9 Chaos implies confusion; 1. A dynamical system and transcendental numbers; 2. Dragon curves; 3. The dimension of a planar curve [2], [10]; 4. Resolvable curves; 5. Geometric probability; 6. Entropy of a finite curve [4], [7], [8].; 7. Thermodynamics [4], [7].; 8. Entropy of unbounded curves; 9. Entropy and dimension; 10. References; 10 The Riemann hypothesis and the Hamiltonian of a quantum mechanical system; 1. Introduction | |
650 | 0 | |a Number theory |v Congresses. | |
650 | 0 | |a Differentiable dynamical systems |v Congresses. | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Théorie des nombres. | |
650 | 6 | |a Théorie des nombres |v Congrès. | |
650 | 6 | |a Dynamique différentiable |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Number theory |2 fast | |
650 | 7 | |a Nombres, Théorie des |x Congrès. |2 ram | |
650 | 7 | |a Dynamique différentiable |x Congrès. |2 ram | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Dodson, M. M. | |
700 | 1 | |a Vickers, J. A. G. | |
776 | 0 | 8 | |i Print version: |t Number theory and dynamical systems. |d Cambridge ; New York : Cambridge University Press, 1989 |z 0521369193 |w (DLC) 90118913 |w (OCoLC)21152847 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 134. |0 http://id.loc.gov/authorities/names/n42015587 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552438 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552438 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10454532 | ||
938 | |a EBSCOhost |b EBSC |n 552438 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154521 | ||
938 | |a YBP Library Services |b YANK |n 10407408 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839544128 |
---|---|
_version_ | 1829094956220809216 |
adam_text | |
any_adam_object | |
author2 | Dodson, M. M. Vickers, J. A. G. |
author2_role | |
author2_variant | m m d mm mmd j a g v jag jagv |
author_facet | Dodson, M. M. Vickers, J. A. G. |
author_sort | Dodson, M. M. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 .N8672 1989eb |
callnumber-search | QA241 .N8672 1989eb |
callnumber-sort | QA 3241 N8672 41989EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Contributors; Introduction; References; 1 Non-degeneracy in the perturbation theory of integrable dynamical systems; 1. The Problem; 2. A general non-degeneracy condition; 3. Formulation of the existence theorem; 4. Lower dimensional invariant tori; 5. The twist mapping theorem; References; 2 Infinite dimensional inverse function theorems and small divisors; 1. Introduction.; 2. Stability under Group Actions; 3. Linearisation and Newton's tangent method.; 4. The infinite dimensional case: finite orderand G-stability 5. Finite order, small divisors and exceptionalsets6. Coflnite G-stability; 7. Normal forms and Siegel's Theorem; 8. References; 3 Metric Diophantine approximation of quadratic forms; 1. Introduction; References; 4 Symbolic dynamics and Diophantine equations; 1. The problems; 2. The Proofs; References; 5 On badly approximable numbers, Schmidt games and bounded orbits of flows; 1. Introduction; 2. Bounded geodesies and horocycles; 3. Anosov flows; 4. Flows on SL(n, R)/SL(n, Z); 5. The Schmidt game; 6, Examples of winning sets in Rn; 7, Back to bounded geodesies 8. Comments on the proofs of other results9. Bounded orbits and simultaneous Diophantine approximation; 10. Miscellaneous comments and questions; 11. References; 6 Estimates for Fourier coefficients of cusp forms; 1. Introduction; 2. Estimation of Satake parameters; 3. Modified Rankin-Selberg method; 4. References; 7 The integral geometry of fractals; 1. Fractals; 2. Integral Geometry; 3. Towards Inequality A; 4. Towards inequality B; 5. Applications to Brownian Motion; 6. Sets with large intersection; 7. References; 8 Geometry of algebraiccontinued fractals; 1. Introduction 2. Quadratic continued fractals. 3. Applications to dynamical systems.; 4. Appendix; 5. References; 9 Chaos implies confusion; 1. A dynamical system and transcendental numbers; 2. Dragon curves; 3. The dimension of a planar curve [2], [10]; 4. Resolvable curves; 5. Geometric probability; 6. Entropy of a finite curve [4], [7], [8].; 7. Thermodynamics [4], [7].; 8. Entropy of unbounded curves; 9. Entropy and dimension; 10. References; 10 The Riemann hypothesis and the Hamiltonian of a quantum mechanical system; 1. Introduction |
ctrlnum | (OCoLC)839544128 |
dewey-full | 512/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.7 |
dewey-search | 512/.7 |
dewey-sort | 3512 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06288cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839544128</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130416s1989 enka ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">OCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715181929</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361553</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361559</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661983</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511661983</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521369193</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521369190</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9521369193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839544128</subfield><subfield code="z">(OCoLC)715181929</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield><subfield code="b">.N8672 1989eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*00Bxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Number theory and dynamical systems /</subfield><subfield code="c">edited by M.M. Dodson, J.A.G. Vickers.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1989.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (172 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Contributions from a meeting held at the University of York, March 30-April 15, 1987.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Contributors; Introduction; References; 1 Non-degeneracy in the perturbation theory of integrable dynamical systems; 1. The Problem; 2. A general non-degeneracy condition; 3. Formulation of the existence theorem; 4. Lower dimensional invariant tori; 5. The twist mapping theorem; References; 2 Infinite dimensional inverse function theorems and small divisors; 1. Introduction.; 2. Stability under Group Actions; 3. Linearisation and Newton's tangent method.; 4. The infinite dimensional case: finite orderand G-stability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Finite order, small divisors and exceptionalsets6. Coflnite G-stability; 7. Normal forms and Siegel's Theorem; 8. References; 3 Metric Diophantine approximation of quadratic forms; 1. Introduction; References; 4 Symbolic dynamics and Diophantine equations; 1. The problems; 2. The Proofs; References; 5 On badly approximable numbers, Schmidt games and bounded orbits of flows; 1. Introduction; 2. Bounded geodesies and horocycles; 3. Anosov flows; 4. Flows on SL(n, R)/SL(n, Z); 5. The Schmidt game; 6, Examples of winning sets in Rn; 7, Back to bounded geodesies</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Comments on the proofs of other results9. Bounded orbits and simultaneous Diophantine approximation; 10. Miscellaneous comments and questions; 11. References; 6 Estimates for Fourier coefficients of cusp forms; 1. Introduction; 2. Estimation of Satake parameters; 3. Modified Rankin-Selberg method; 4. References; 7 The integral geometry of fractals; 1. Fractals; 2. Integral Geometry; 3. Towards Inequality A; 4. Towards inequality B; 5. Applications to Brownian Motion; 6. Sets with large intersection; 7. References; 8 Geometry of algebraiccontinued fractals; 1. Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Quadratic continued fractals. 3. Applications to dynamical systems.; 4. Appendix; 5. References; 9 Chaos implies confusion; 1. A dynamical system and transcendental numbers; 2. Dragon curves; 3. The dimension of a planar curve [2], [10]; 4. Resolvable curves; 5. Geometric probability; 6. Entropy of a finite curve [4], [7], [8].; 7. Thermodynamics [4], [7].; 8. Entropy of unbounded curves; 9. Entropy and dimension; 10. References; 10 The Riemann hypothesis and the Hamiltonian of a quantum mechanical system; 1. Introduction</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, Théorie des</subfield><subfield code="x">Congrès.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamique différentiable</subfield><subfield code="x">Congrès.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dodson, M. M.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vickers, J. A. G.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Number theory and dynamical systems.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1989</subfield><subfield code="z">0521369193</subfield><subfield code="w">(DLC) 90118913</subfield><subfield code="w">(OCoLC)21152847</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">134.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552438</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552438</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10454532</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552438</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154521</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407408</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn839544128 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:21Z |
institution | BVB |
isbn | 9781107361553 1107361559 9780511661983 0511661983 |
language | English |
oclc_num | 839544128 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (172 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Number theory and dynamical systems / edited by M.M. Dodson, J.A.G. Vickers. Cambridge ; New York : Cambridge University Press, 1989. 1 online resource (172 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 134 Contributions from a meeting held at the University of York, March 30-April 15, 1987. Includes bibliographical references. Print version record. This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems. Cover; Title; Copyright; Contents; Contributors; Introduction; References; 1 Non-degeneracy in the perturbation theory of integrable dynamical systems; 1. The Problem; 2. A general non-degeneracy condition; 3. Formulation of the existence theorem; 4. Lower dimensional invariant tori; 5. The twist mapping theorem; References; 2 Infinite dimensional inverse function theorems and small divisors; 1. Introduction.; 2. Stability under Group Actions; 3. Linearisation and Newton's tangent method.; 4. The infinite dimensional case: finite orderand G-stability 5. Finite order, small divisors and exceptionalsets6. Coflnite G-stability; 7. Normal forms and Siegel's Theorem; 8. References; 3 Metric Diophantine approximation of quadratic forms; 1. Introduction; References; 4 Symbolic dynamics and Diophantine equations; 1. The problems; 2. The Proofs; References; 5 On badly approximable numbers, Schmidt games and bounded orbits of flows; 1. Introduction; 2. Bounded geodesies and horocycles; 3. Anosov flows; 4. Flows on SL(n, R)/SL(n, Z); 5. The Schmidt game; 6, Examples of winning sets in Rn; 7, Back to bounded geodesies 8. Comments on the proofs of other results9. Bounded orbits and simultaneous Diophantine approximation; 10. Miscellaneous comments and questions; 11. References; 6 Estimates for Fourier coefficients of cusp forms; 1. Introduction; 2. Estimation of Satake parameters; 3. Modified Rankin-Selberg method; 4. References; 7 The integral geometry of fractals; 1. Fractals; 2. Integral Geometry; 3. Towards Inequality A; 4. Towards inequality B; 5. Applications to Brownian Motion; 6. Sets with large intersection; 7. References; 8 Geometry of algebraiccontinued fractals; 1. Introduction 2. Quadratic continued fractals. 3. Applications to dynamical systems.; 4. Appendix; 5. References; 9 Chaos implies confusion; 1. A dynamical system and transcendental numbers; 2. Dragon curves; 3. The dimension of a planar curve [2], [10]; 4. Resolvable curves; 5. Geometric probability; 6. Entropy of a finite curve [4], [7], [8].; 7. Thermodynamics [4], [7].; 8. Entropy of unbounded curves; 9. Entropy and dimension; 10. References; 10 The Riemann hypothesis and the Hamiltonian of a quantum mechanical system; 1. Introduction Number theory Congresses. Differentiable dynamical systems Congresses. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Théorie des nombres Congrès. Dynamique différentiable Congrès. MATHEMATICS Number Theory. bisacsh Differentiable dynamical systems fast Number theory fast Nombres, Théorie des Congrès. ram Dynamique différentiable Congrès. ram Conference papers and proceedings fast Dodson, M. M. Vickers, J. A. G. Print version: Number theory and dynamical systems. Cambridge ; New York : Cambridge University Press, 1989 0521369193 (DLC) 90118913 (OCoLC)21152847 London Mathematical Society lecture note series ; 134. http://id.loc.gov/authorities/names/n42015587 |
spellingShingle | Number theory and dynamical systems / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Contributors; Introduction; References; 1 Non-degeneracy in the perturbation theory of integrable dynamical systems; 1. The Problem; 2. A general non-degeneracy condition; 3. Formulation of the existence theorem; 4. Lower dimensional invariant tori; 5. The twist mapping theorem; References; 2 Infinite dimensional inverse function theorems and small divisors; 1. Introduction.; 2. Stability under Group Actions; 3. Linearisation and Newton's tangent method.; 4. The infinite dimensional case: finite orderand G-stability 5. Finite order, small divisors and exceptionalsets6. Coflnite G-stability; 7. Normal forms and Siegel's Theorem; 8. References; 3 Metric Diophantine approximation of quadratic forms; 1. Introduction; References; 4 Symbolic dynamics and Diophantine equations; 1. The problems; 2. The Proofs; References; 5 On badly approximable numbers, Schmidt games and bounded orbits of flows; 1. Introduction; 2. Bounded geodesies and horocycles; 3. Anosov flows; 4. Flows on SL(n, R)/SL(n, Z); 5. The Schmidt game; 6, Examples of winning sets in Rn; 7, Back to bounded geodesies 8. Comments on the proofs of other results9. Bounded orbits and simultaneous Diophantine approximation; 10. Miscellaneous comments and questions; 11. References; 6 Estimates for Fourier coefficients of cusp forms; 1. Introduction; 2. Estimation of Satake parameters; 3. Modified Rankin-Selberg method; 4. References; 7 The integral geometry of fractals; 1. Fractals; 2. Integral Geometry; 3. Towards Inequality A; 4. Towards inequality B; 5. Applications to Brownian Motion; 6. Sets with large intersection; 7. References; 8 Geometry of algebraiccontinued fractals; 1. Introduction 2. Quadratic continued fractals. 3. Applications to dynamical systems.; 4. Appendix; 5. References; 9 Chaos implies confusion; 1. A dynamical system and transcendental numbers; 2. Dragon curves; 3. The dimension of a planar curve [2], [10]; 4. Resolvable curves; 5. Geometric probability; 6. Entropy of a finite curve [4], [7], [8].; 7. Thermodynamics [4], [7].; 8. Entropy of unbounded curves; 9. Entropy and dimension; 10. References; 10 The Riemann hypothesis and the Hamiltonian of a quantum mechanical system; 1. Introduction Number theory Congresses. Differentiable dynamical systems Congresses. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Théorie des nombres Congrès. Dynamique différentiable Congrès. MATHEMATICS Number Theory. bisacsh Differentiable dynamical systems fast Number theory fast Nombres, Théorie des Congrès. ram Dynamique différentiable Congrès. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093222 |
title | Number theory and dynamical systems / |
title_auth | Number theory and dynamical systems / |
title_exact_search | Number theory and dynamical systems / |
title_full | Number theory and dynamical systems / edited by M.M. Dodson, J.A.G. Vickers. |
title_fullStr | Number theory and dynamical systems / edited by M.M. Dodson, J.A.G. Vickers. |
title_full_unstemmed | Number theory and dynamical systems / edited by M.M. Dodson, J.A.G. Vickers. |
title_short | Number theory and dynamical systems / |
title_sort | number theory and dynamical systems |
topic | Number theory Congresses. Differentiable dynamical systems Congresses. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. Théorie des nombres Congrès. Dynamique différentiable Congrès. MATHEMATICS Number Theory. bisacsh Differentiable dynamical systems fast Number theory fast Nombres, Théorie des Congrès. ram Dynamique différentiable Congrès. ram |
topic_facet | Number theory Congresses. Differentiable dynamical systems Congresses. Number theory. Théorie des nombres. Théorie des nombres Congrès. Dynamique différentiable Congrès. MATHEMATICS Number Theory. Differentiable dynamical systems Number theory Nombres, Théorie des Congrès. Conference papers and proceedings |
work_keys_str_mv | AT dodsonmm numbertheoryanddynamicalsystems AT vickersjag numbertheoryanddynamicalsystems |