Value solutions in cooperative games /:
This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new va...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific Pub.,
©2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered. |
Beschreibung: | 1 online resource (1 volume) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9814417408 9789814417402 1299462456 9781299462458 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839388513 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 130414s2013 nju ob 001 0 eng d | ||
010 | |z 2012046042 | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d OCLCO |d N$T |d DEBSZ |d E7B |d STF |d GGVRL |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d JBG |d MOR |d CCO |d PIFAG |d MERUC |d OCLCQ |d ZCU |d NJR |d U3W |d OCLCQ |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
019 | |a 961653876 |a 962647996 |a 965988426 |a 988491827 |a 991946587 |a 1037699326 |a 1038616017 |a 1045498082 |a 1055398176 |a 1065714586 |a 1081261279 |a 1259251438 | ||
020 | |a 9814417408 |q (electronic bk.) | ||
020 | |a 9789814417402 |q (electronic bk.) | ||
020 | |z 9789814417396 |q (hardcover ; |q alk. paper) | ||
020 | |z 9814417394 |q (hardcover ; |q alk. paper) | ||
020 | |a 1299462456 | ||
020 | |a 9781299462458 | ||
035 | |a (OCoLC)839388513 |z (OCoLC)961653876 |z (OCoLC)962647996 |z (OCoLC)965988426 |z (OCoLC)988491827 |z (OCoLC)991946587 |z (OCoLC)1037699326 |z (OCoLC)1038616017 |z (OCoLC)1045498082 |z (OCoLC)1055398176 |z (OCoLC)1065714586 |z (OCoLC)1081261279 |z (OCoLC)1259251438 | ||
050 | 4 | |a QA272.4 |b .M35 2013 | |
072 | 7 | |a MAT |x 011000 |2 bisacsh | |
082 | 7 | |a 519.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a McCain, Roger A. | |
245 | 1 | 0 | |a Value solutions in cooperative games / |c by Roger A McCain. |
260 | |a Hackensack, NJ : |b World Scientific Pub., |c ©2013. | ||
300 | |a 1 online resource (1 volume) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise. | |
588 | 0 | |a Print version record. | |
520 | |a This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered. | ||
504 | |a Includes bibliographical references and index. | ||
546 | |a English. | ||
650 | 0 | |a Cooperative games (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh2011005302 | |
650 | 0 | |a Game theory. |0 http://id.loc.gov/authorities/subjects/sh85052941 | |
650 | 0 | |a Values. |0 http://id.loc.gov/authorities/subjects/sh85141939 | |
650 | 6 | |a Jeux coopératifs (Mathématiques) | |
650 | 6 | |a Théorie des jeux. | |
650 | 7 | |a MATHEMATICS |x Game Theory. |2 bisacsh | |
650 | 7 | |a Cooperative games (Mathematics) |2 fast | |
650 | 7 | |a Game theory |2 fast | |
650 | 7 | |a Values |2 fast | |
758 | |i has work: |a Value solutions in cooperative games (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGKYKmjRqWFFvYKy3KgTd3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814417396 |z 9814417394 |w (DLC) 2012046042 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=564522 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10691974 | ||
938 | |a EBSCOhost |b EBSC |n 564522 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8RAC | ||
938 | |a YBP Library Services |b YANK |n 10411692 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839388513 |
---|---|
_version_ | 1816882229405548544 |
adam_text | |
any_adam_object | |
author | McCain, Roger A. |
author_facet | McCain, Roger A. |
author_role | |
author_sort | McCain, Roger A. |
author_variant | r a m ra ram |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA272 |
callnumber-raw | QA272.4 .M35 2013 |
callnumber-search | QA272.4 .M35 2013 |
callnumber-sort | QA 3272.4 M35 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise. |
ctrlnum | (OCoLC)839388513 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04185cam a2200613Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839388513</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">130414s2013 nju ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2012046042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">E7B</subfield><subfield code="d">STF</subfield><subfield code="d">GGVRL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">NJR</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961653876</subfield><subfield code="a">962647996</subfield><subfield code="a">965988426</subfield><subfield code="a">988491827</subfield><subfield code="a">991946587</subfield><subfield code="a">1037699326</subfield><subfield code="a">1038616017</subfield><subfield code="a">1045498082</subfield><subfield code="a">1055398176</subfield><subfield code="a">1065714586</subfield><subfield code="a">1081261279</subfield><subfield code="a">1259251438</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814417408</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814417402</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814417396</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814417394</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299462456</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299462458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839388513</subfield><subfield code="z">(OCoLC)961653876</subfield><subfield code="z">(OCoLC)962647996</subfield><subfield code="z">(OCoLC)965988426</subfield><subfield code="z">(OCoLC)988491827</subfield><subfield code="z">(OCoLC)991946587</subfield><subfield code="z">(OCoLC)1037699326</subfield><subfield code="z">(OCoLC)1038616017</subfield><subfield code="z">(OCoLC)1045498082</subfield><subfield code="z">(OCoLC)1055398176</subfield><subfield code="z">(OCoLC)1065714586</subfield><subfield code="z">(OCoLC)1081261279</subfield><subfield code="z">(OCoLC)1259251438</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA272.4</subfield><subfield code="b">.M35 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">011000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCain, Roger A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Value solutions in cooperative games /</subfield><subfield code="c">by Roger A McCain.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific Pub.,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cooperative games (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2011005302</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Game theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052941</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Values.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85141939</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Jeux coopératifs (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des jeux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Game Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cooperative games (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Game theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Values</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Value solutions in cooperative games (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGKYKmjRqWFFvYKy3KgTd3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814417396</subfield><subfield code="z">9814417394</subfield><subfield code="w">(DLC) 2012046042</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=564522</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10691974</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">564522</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8RAC</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10411692</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839388513 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:18Z |
institution | BVB |
isbn | 9814417408 9789814417402 1299462456 9781299462458 |
language | English |
oclc_num | 839388513 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub., |
record_format | marc |
spelling | McCain, Roger A. Value solutions in cooperative games / by Roger A McCain. Hackensack, NJ : World Scientific Pub., ©2013. 1 online resource (1 volume) text txt rdacontent computer c rdamedia online resource cr rdacarrier Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise. Print version record. This book introduces new concepts for cooperative game theory, and particularly solutions that determine the distribution of a coalitional surplus among the members of the coalition. It also addresses several generalizations of cooperative game theory. Drawing on methods of welfare economics, new value solutions are derived for Non-Transferable Utility games with and without differences of bargaining power among the members of the coalition. Cooperation in intertemporal games is examined, and conditions that permit the reduction of these games to games in coalition function form are outlined. Biform games and games that combine non-cooperative search and matching of coalition members with cooperative solutions (i.e., efficient contracts) within the coalition are considered. Includes bibliographical references and index. English. Cooperative games (Mathematics) http://id.loc.gov/authorities/subjects/sh2011005302 Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Values. http://id.loc.gov/authorities/subjects/sh85141939 Jeux coopératifs (Mathématiques) Théorie des jeux. MATHEMATICS Game Theory. bisacsh Cooperative games (Mathematics) fast Game theory fast Values fast has work: Value solutions in cooperative games (Text) https://id.oclc.org/worldcat/entity/E39PCGKYKmjRqWFFvYKy3KgTd3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814417396 9814417394 (DLC) 2012046042 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=564522 Volltext |
spellingShingle | McCain, Roger A. Value solutions in cooperative games / Value solutions for superadditive transferable utility games in coalition function form -- Zeuthen-Nash bargaining -- Nontransferable utility games and games in partition function form -- A shapley value algorithm for games in partition function form -- Extension of the nucleolus to nontransferable utility games in partition function form -- A core imputation with variable bargaining power -- Bargaining power biform games -- Intertemporal cooperative games: a sketch of a theory -- A theory of enterprise. Cooperative games (Mathematics) http://id.loc.gov/authorities/subjects/sh2011005302 Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Values. http://id.loc.gov/authorities/subjects/sh85141939 Jeux coopératifs (Mathématiques) Théorie des jeux. MATHEMATICS Game Theory. bisacsh Cooperative games (Mathematics) fast Game theory fast Values fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2011005302 http://id.loc.gov/authorities/subjects/sh85052941 http://id.loc.gov/authorities/subjects/sh85141939 |
title | Value solutions in cooperative games / |
title_auth | Value solutions in cooperative games / |
title_exact_search | Value solutions in cooperative games / |
title_full | Value solutions in cooperative games / by Roger A McCain. |
title_fullStr | Value solutions in cooperative games / by Roger A McCain. |
title_full_unstemmed | Value solutions in cooperative games / by Roger A McCain. |
title_short | Value solutions in cooperative games / |
title_sort | value solutions in cooperative games |
topic | Cooperative games (Mathematics) http://id.loc.gov/authorities/subjects/sh2011005302 Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Values. http://id.loc.gov/authorities/subjects/sh85141939 Jeux coopératifs (Mathématiques) Théorie des jeux. MATHEMATICS Game Theory. bisacsh Cooperative games (Mathematics) fast Game theory fast Values fast |
topic_facet | Cooperative games (Mathematics) Game theory. Values. Jeux coopératifs (Mathématiques) Théorie des jeux. MATHEMATICS Game Theory. Game theory Values |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=564522 |
work_keys_str_mv | AT mccainrogera valuesolutionsincooperativegames |