Elliptic structures on 3-manifolds /:
This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/pris...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1986.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
104. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure. |
Beschreibung: | Notes from lectures given at the University of Chicago in Apr. and May 1983. |
Beschreibung: | 1 online resource (122 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 119-121) and index. |
ISBN: | 9781107361294 110736129X 9780511662591 0511662599 9780511965302 0511965303 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839305397 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1986 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d YDX |d AGLDB |d OCLCQ |d UAB |d VTS |d REC |d STF |d M8D |d OCLCO |d INARC |d AJS |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 715184510 |a 961200147 |a 961401130 | ||
020 | |a 9781107361294 |q (electronic bk.) | ||
020 | |a 110736129X |q (electronic bk.) | ||
020 | |a 9780511662591 |q (e-book) | ||
020 | |a 0511662599 |q (e-book) | ||
020 | |a 9780511965302 | ||
020 | |a 0511965303 | ||
020 | |z 052131576X | ||
020 | |z 9780521315760 | ||
035 | |a (OCoLC)839305397 |z (OCoLC)715184510 |z (OCoLC)961200147 |z (OCoLC)961401130 | ||
050 | 4 | |a QA613.2 |b .T47 1986eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.223 |2 22 | |
084 | |a SI 320 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Thomas, C. B. |q (Charles Benedict) |1 https://id.oclc.org/worldcat/entity/E39PBJxxdCpQHFY7RG84RpCmh3 |0 http://id.loc.gov/authorities/names/n85077087 | |
245 | 1 | 0 | |a Elliptic structures on 3-manifolds / |c C.B. Thomas. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1986. | ||
300 | |a 1 online resource (122 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 104 | |
500 | |a Notes from lectures given at the University of Chicago in Apr. and May 1983. | ||
504 | |a Includes bibliographical references (pages 119-121) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; INTRODUCTION; CHAPTER I: SEIFERT MANIFOLDS; THEOREM 1.1; THEOREM 1.2; THEOREM 1.3; LEMMA 1.4; LEMMA 1.5; LEMMA 1.6; LEMMA 1.7; Notes and references; CHAPTER II: GROUPS WITH PERIODIC COHOMOLOGY; LEMMA 2.2; LEMMA 2.3; THEOREM 2.4; THEOREM 2.5; THEOREM 2.6; Notes and references; CHAPTER III: Free C2 and C3 actions on certainSeifert manifolds; THEOREM 3.1; THEOREM 3.2; Removal of the contractible curves in; Removal of triple points; Fibering the orbit space.; THEOREM 3.3; THEOREM 3.4; COROLLARY 3.5; Notes and References; CHAPTER IV: THE REDUCTION THEOREM | |
505 | 8 | |a THEOREM 4.1Type III; HYPOTHESIS 4.2; THEOREM 4.3; THEOREM 4.4; Notes and references; CHAPTER V: TANGENTIAL STRUCTURE; LEMMA 5.1; THEOREM 5.2; LEMMA 5.3; PROPOSITION 5.4; THEOREM 5.5; PROPOSITION 5.6; EXAMPLES 1.; THEOREM 5.7; THEOREM 5.8; Notes and references; CHAPTER VI: SL(2,F5).; PROPOSITION 6.1; PROPOSITION 6.2; LEMMA 6.3; LEMMA 6.4; THEOREM 6.5; THEOREM 6.6; Notes and References; CHAPTER VII: FINITE POINCARE COMPLEXES AND HOMOLOGY SPHERES; LEMMA 7.1; LEMMA 7.2; LEMMA 7.3; Notes and References; CHAPTER VIII: W0RKP0INTS; THEOREM 8.1; THEOREM 8.2; THEOREM 8.3; THEOREM 8.4; THEOREM 85 | |
505 | 8 | |a APPENDIX:Genus two Heegard decompositions for elliptic manifoldsREFERENCES; Index | |
650 | 0 | |a Three-manifolds (Topology) |0 http://id.loc.gov/authorities/subjects/sh85135028 | |
650 | 6 | |a Variétés topologiques à 3 dimensions. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
650 | 7 | |a Elliptische Kurve |2 gnd |0 http://d-nb.info/gnd/4014487-2 | |
650 | 7 | |a Variétés topologiques à 3 dimensions. |2 ram | |
740 | 0 | |a Elliptic structures on three-manifolds. | |
758 | |i has work: |a Elliptic structures on 3-manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG9XKQk9ckPVq4J9pHr3pK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Thomas, C.B. (Charles Benedict). |t Elliptic structures on 3-manifolds. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986 |z 052131576X |w (DLC) 85012742 |w (OCoLC)12108055 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 104. |0 http://id.loc.gov/authorities/names/n42015587 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552485 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552485 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10455489 | ||
938 | |a EBSCOhost |b EBSC |n 552485 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154497 | ||
938 | |a Internet Archive |b INAR |n ellipticstructur0000thom | ||
938 | |a YBP Library Services |b YANK |n 10407384 | ||
938 | |a YBP Library Services |b YANK |n 10370227 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839305397 |
---|---|
_version_ | 1829094956020531200 |
adam_text | |
any_adam_object | |
author | Thomas, C. B. (Charles Benedict) |
author_GND | http://id.loc.gov/authorities/names/n85077087 |
author_facet | Thomas, C. B. (Charles Benedict) |
author_role | |
author_sort | Thomas, C. B. |
author_variant | c b t cb cbt |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.2 .T47 1986eb |
callnumber-search | QA613.2 .T47 1986eb |
callnumber-sort | QA 3613.2 T47 41986EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; INTRODUCTION; CHAPTER I: SEIFERT MANIFOLDS; THEOREM 1.1; THEOREM 1.2; THEOREM 1.3; LEMMA 1.4; LEMMA 1.5; LEMMA 1.6; LEMMA 1.7; Notes and references; CHAPTER II: GROUPS WITH PERIODIC COHOMOLOGY; LEMMA 2.2; LEMMA 2.3; THEOREM 2.4; THEOREM 2.5; THEOREM 2.6; Notes and references; CHAPTER III: Free C2 and C3 actions on certainSeifert manifolds; THEOREM 3.1; THEOREM 3.2; Removal of the contractible curves in; Removal of triple points; Fibering the orbit space.; THEOREM 3.3; THEOREM 3.4; COROLLARY 3.5; Notes and References; CHAPTER IV: THE REDUCTION THEOREM THEOREM 4.1Type III; HYPOTHESIS 4.2; THEOREM 4.3; THEOREM 4.4; Notes and references; CHAPTER V: TANGENTIAL STRUCTURE; LEMMA 5.1; THEOREM 5.2; LEMMA 5.3; PROPOSITION 5.4; THEOREM 5.5; PROPOSITION 5.6; EXAMPLES 1.; THEOREM 5.7; THEOREM 5.8; Notes and references; CHAPTER VI: SL(2,F5).; PROPOSITION 6.1; PROPOSITION 6.2; LEMMA 6.3; LEMMA 6.4; THEOREM 6.5; THEOREM 6.6; Notes and References; CHAPTER VII: FINITE POINCARE COMPLEXES AND HOMOLOGY SPHERES; LEMMA 7.1; LEMMA 7.2; LEMMA 7.3; Notes and References; CHAPTER VIII: W0RKP0INTS; THEOREM 8.1; THEOREM 8.2; THEOREM 8.3; THEOREM 8.4; THEOREM 85 APPENDIX:Genus two Heegard decompositions for elliptic manifoldsREFERENCES; Index |
ctrlnum | (OCoLC)839305397 |
dewey-full | 514/.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.223 |
dewey-search | 514/.223 |
dewey-sort | 3514 3223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04860cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839305397</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1986 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715184510</subfield><subfield code="a">961200147</subfield><subfield code="a">961401130</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361294</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110736129X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662591</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662599</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511965302</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511965303</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052131576X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521315760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839305397</subfield><subfield code="z">(OCoLC)715184510</subfield><subfield code="z">(OCoLC)961200147</subfield><subfield code="z">(OCoLC)961401130</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613.2</subfield><subfield code="b">.T47 1986eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.223</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, C. B.</subfield><subfield code="q">(Charles Benedict)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxxdCpQHFY7RG84RpCmh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85077087</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic structures on 3-manifolds /</subfield><subfield code="c">C.B. Thomas.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1986.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (122 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">104</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Notes from lectures given at the University of Chicago in Apr. and May 1983.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 119-121) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; INTRODUCTION; CHAPTER I: SEIFERT MANIFOLDS; THEOREM 1.1; THEOREM 1.2; THEOREM 1.3; LEMMA 1.4; LEMMA 1.5; LEMMA 1.6; LEMMA 1.7; Notes and references; CHAPTER II: GROUPS WITH PERIODIC COHOMOLOGY; LEMMA 2.2; LEMMA 2.3; THEOREM 2.4; THEOREM 2.5; THEOREM 2.6; Notes and references; CHAPTER III: Free C2 and C3 actions on certainSeifert manifolds; THEOREM 3.1; THEOREM 3.2; Removal of the contractible curves in; Removal of triple points; Fibering the orbit space.; THEOREM 3.3; THEOREM 3.4; COROLLARY 3.5; Notes and References; CHAPTER IV: THE REDUCTION THEOREM</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">THEOREM 4.1Type III; HYPOTHESIS 4.2; THEOREM 4.3; THEOREM 4.4; Notes and references; CHAPTER V: TANGENTIAL STRUCTURE; LEMMA 5.1; THEOREM 5.2; LEMMA 5.3; PROPOSITION 5.4; THEOREM 5.5; PROPOSITION 5.6; EXAMPLES 1.; THEOREM 5.7; THEOREM 5.8; Notes and references; CHAPTER VI: SL(2,F5).; PROPOSITION 6.1; PROPOSITION 6.2; LEMMA 6.3; LEMMA 6.4; THEOREM 6.5; THEOREM 6.6; Notes and References; CHAPTER VII: FINITE POINCARE COMPLEXES AND HOMOLOGY SPHERES; LEMMA 7.1; LEMMA 7.2; LEMMA 7.3; Notes and References; CHAPTER VIII: W0RKP0INTS; THEOREM 8.1; THEOREM 8.2; THEOREM 8.3; THEOREM 8.4; THEOREM 85</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">APPENDIX:Genus two Heegard decompositions for elliptic manifoldsREFERENCES; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135028</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés topologiques à 3 dimensions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4014487-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés topologiques à 3 dimensions.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="740" ind1="0" ind2=" "><subfield code="a">Elliptic structures on three-manifolds.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Elliptic structures on 3-manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG9XKQk9ckPVq4J9pHr3pK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Thomas, C.B. (Charles Benedict).</subfield><subfield code="t">Elliptic structures on 3-manifolds.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986</subfield><subfield code="z">052131576X</subfield><subfield code="w">(DLC) 85012742</subfield><subfield code="w">(OCoLC)12108055</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">104.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552485</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552485</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10455489</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552485</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154497</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">ellipticstructur0000thom</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407384</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370227</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839305397 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:21Z |
institution | BVB |
isbn | 9781107361294 110736129X 9780511662591 0511662599 9780511965302 0511965303 |
language | English |
oclc_num | 839305397 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (122 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Thomas, C. B. (Charles Benedict) https://id.oclc.org/worldcat/entity/E39PBJxxdCpQHFY7RG84RpCmh3 http://id.loc.gov/authorities/names/n85077087 Elliptic structures on 3-manifolds / C.B. Thomas. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986. 1 online resource (122 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 104 Notes from lectures given at the University of Chicago in Apr. and May 1983. Includes bibliographical references (pages 119-121) and index. Print version record. This volume will give a systematic exposition of known results for free actions by finite groups on S. The text begins with preliminary material on Seifert manifolds and group classification. This is followed by sections dealing with related topics including free bZe/2 and bZe/3 actions on lens/prism manifolds, the reduction theorem and tangential structure. Cover; Title; Copyright; Contents; INTRODUCTION; CHAPTER I: SEIFERT MANIFOLDS; THEOREM 1.1; THEOREM 1.2; THEOREM 1.3; LEMMA 1.4; LEMMA 1.5; LEMMA 1.6; LEMMA 1.7; Notes and references; CHAPTER II: GROUPS WITH PERIODIC COHOMOLOGY; LEMMA 2.2; LEMMA 2.3; THEOREM 2.4; THEOREM 2.5; THEOREM 2.6; Notes and references; CHAPTER III: Free C2 and C3 actions on certainSeifert manifolds; THEOREM 3.1; THEOREM 3.2; Removal of the contractible curves in; Removal of triple points; Fibering the orbit space.; THEOREM 3.3; THEOREM 3.4; COROLLARY 3.5; Notes and References; CHAPTER IV: THE REDUCTION THEOREM THEOREM 4.1Type III; HYPOTHESIS 4.2; THEOREM 4.3; THEOREM 4.4; Notes and references; CHAPTER V: TANGENTIAL STRUCTURE; LEMMA 5.1; THEOREM 5.2; LEMMA 5.3; PROPOSITION 5.4; THEOREM 5.5; PROPOSITION 5.6; EXAMPLES 1.; THEOREM 5.7; THEOREM 5.8; Notes and references; CHAPTER VI: SL(2,F5).; PROPOSITION 6.1; PROPOSITION 6.2; LEMMA 6.3; LEMMA 6.4; THEOREM 6.5; THEOREM 6.6; Notes and References; CHAPTER VII: FINITE POINCARE COMPLEXES AND HOMOLOGY SPHERES; LEMMA 7.1; LEMMA 7.2; LEMMA 7.3; Notes and References; CHAPTER VIII: W0RKP0INTS; THEOREM 8.1; THEOREM 8.2; THEOREM 8.3; THEOREM 8.4; THEOREM 85 APPENDIX:Genus two Heegard decompositions for elliptic manifoldsREFERENCES; Index Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Variétés topologiques à 3 dimensions. MATHEMATICS Topology. bisacsh Three-manifolds (Topology) fast Elliptische Kurve gnd http://d-nb.info/gnd/4014487-2 Variétés topologiques à 3 dimensions. ram Elliptic structures on three-manifolds. has work: Elliptic structures on 3-manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCG9XKQk9ckPVq4J9pHr3pK https://id.oclc.org/worldcat/ontology/hasWork Print version: Thomas, C.B. (Charles Benedict). Elliptic structures on 3-manifolds. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986 052131576X (DLC) 85012742 (OCoLC)12108055 London Mathematical Society lecture note series ; 104. http://id.loc.gov/authorities/names/n42015587 |
spellingShingle | Thomas, C. B. (Charles Benedict) Elliptic structures on 3-manifolds / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; INTRODUCTION; CHAPTER I: SEIFERT MANIFOLDS; THEOREM 1.1; THEOREM 1.2; THEOREM 1.3; LEMMA 1.4; LEMMA 1.5; LEMMA 1.6; LEMMA 1.7; Notes and references; CHAPTER II: GROUPS WITH PERIODIC COHOMOLOGY; LEMMA 2.2; LEMMA 2.3; THEOREM 2.4; THEOREM 2.5; THEOREM 2.6; Notes and references; CHAPTER III: Free C2 and C3 actions on certainSeifert manifolds; THEOREM 3.1; THEOREM 3.2; Removal of the contractible curves in; Removal of triple points; Fibering the orbit space.; THEOREM 3.3; THEOREM 3.4; COROLLARY 3.5; Notes and References; CHAPTER IV: THE REDUCTION THEOREM THEOREM 4.1Type III; HYPOTHESIS 4.2; THEOREM 4.3; THEOREM 4.4; Notes and references; CHAPTER V: TANGENTIAL STRUCTURE; LEMMA 5.1; THEOREM 5.2; LEMMA 5.3; PROPOSITION 5.4; THEOREM 5.5; PROPOSITION 5.6; EXAMPLES 1.; THEOREM 5.7; THEOREM 5.8; Notes and references; CHAPTER VI: SL(2,F5).; PROPOSITION 6.1; PROPOSITION 6.2; LEMMA 6.3; LEMMA 6.4; THEOREM 6.5; THEOREM 6.6; Notes and References; CHAPTER VII: FINITE POINCARE COMPLEXES AND HOMOLOGY SPHERES; LEMMA 7.1; LEMMA 7.2; LEMMA 7.3; Notes and References; CHAPTER VIII: W0RKP0INTS; THEOREM 8.1; THEOREM 8.2; THEOREM 8.3; THEOREM 8.4; THEOREM 85 APPENDIX:Genus two Heegard decompositions for elliptic manifoldsREFERENCES; Index Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Variétés topologiques à 3 dimensions. MATHEMATICS Topology. bisacsh Three-manifolds (Topology) fast Elliptische Kurve gnd http://d-nb.info/gnd/4014487-2 Variétés topologiques à 3 dimensions. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85135028 http://d-nb.info/gnd/4014487-2 |
title | Elliptic structures on 3-manifolds / |
title_alt | Elliptic structures on three-manifolds. |
title_auth | Elliptic structures on 3-manifolds / |
title_exact_search | Elliptic structures on 3-manifolds / |
title_full | Elliptic structures on 3-manifolds / C.B. Thomas. |
title_fullStr | Elliptic structures on 3-manifolds / C.B. Thomas. |
title_full_unstemmed | Elliptic structures on 3-manifolds / C.B. Thomas. |
title_short | Elliptic structures on 3-manifolds / |
title_sort | elliptic structures on 3 manifolds |
topic | Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Variétés topologiques à 3 dimensions. MATHEMATICS Topology. bisacsh Three-manifolds (Topology) fast Elliptische Kurve gnd http://d-nb.info/gnd/4014487-2 Variétés topologiques à 3 dimensions. ram |
topic_facet | Three-manifolds (Topology) Variétés topologiques à 3 dimensions. MATHEMATICS Topology. Elliptische Kurve |
work_keys_str_mv | AT thomascb ellipticstructureson3manifolds |