Skew fields /:
The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1983.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
81. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K, -theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians. |
Beschreibung: | 1 online resource (viii, 182 pages) |
Bibliographie: | Includes bibliographical references (pages 173-178) and index. |
ISBN: | 9781107361003 1107361001 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839305373 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1983 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 797842880 | ||
020 | |a 9781107361003 |q (electronic bk.) | ||
020 | |a 1107361001 |q (electronic bk.) | ||
020 | |z 0521272742 | ||
020 | |z 9780521272742 | ||
020 | |z 9780511661907 | ||
035 | |a (OCoLC)839305373 |z (OCoLC)797842880 | ||
050 | 4 | |a QA247 |b .D7 1983eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.3 |2 22 | |
084 | |a 31.23 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Draxl, P. |q (Peter) |1 https://id.oclc.org/worldcat/entity/E39PCjGBKgBKY3Bf4JxVgCwYKd |0 http://id.loc.gov/authorities/names/n82072623 | |
245 | 1 | 0 | |a Skew fields / |c P.K. Draxl. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1983. | ||
300 | |a 1 online resource (viii, 182 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 81 | |
504 | |a Includes bibliographical references (pages 173-178) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K, -theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Conventions on Terminology; Part I. Skew Fields and Simple Rings; 1. Some ad hoc Results on Skew Fields; 2. Rings of Matrices over Skew Fields; 3. Simple Rings and Wedderburn's Main Theorem; 4. A Short Cut to Tensor Products; 5. Tensor Products and Algebras; 6. Tensor Products and Galois Theory; 7. Skolem-Noether Theorem and Centralizer Theorem; 8. The Corestriction of Algebras; Part II. Skew Fields and Brauer Groups; 9. Brauer Groups over Fields; 10. Cyclic Algebras; 11. Power Norm Residue Algebras | |
650 | 0 | |a Skew fields. |0 http://id.loc.gov/authorities/subjects/sh85123128 | |
650 | 0 | |a Brauer groups. |0 http://id.loc.gov/authorities/subjects/sh85016501 | |
650 | 0 | |a K-theory. |0 http://id.loc.gov/authorities/subjects/sh85071200 | |
650 | 6 | |a Groupes de Brauer. | |
650 | 6 | |a K-théorie. | |
650 | 6 | |a Corps gauches. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Brauer groups |2 fast | |
650 | 7 | |a K-theory |2 fast | |
650 | 7 | |a Skew fields |2 fast | |
650 | 7 | |a Schiefkörper |2 gnd |0 http://d-nb.info/gnd/4052359-7 | |
650 | 7 | |a Quaternion |2 gnd |0 http://d-nb.info/gnd/4176653-2 | |
650 | 7 | |a Algebra |2 gnd |0 http://d-nb.info/gnd/4001156-2 | |
650 | 1 | 7 | |a Associatieve ringen. |2 gtt |
650 | 1 | 7 | |a Lichamen (wiskunde) |2 gtt |
650 | 7 | |a Corps gauches. |2 ram | |
650 | 7 | |a Brauer, Groupe de. |2 ram | |
650 | 7 | |a K-théorie. |2 ram | |
776 | 0 | 8 | |i Print version: |a Draxl, P. (Peter). |t Skew fields. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983 |z 0521272742 |w (DLC) 82022036 |w (OCoLC)8975480 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 81. |0 http://id.loc.gov/authorities/names/n42015587 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552431 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552431 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10562387 | ||
938 | |a EBSCOhost |b EBSC |n 552431 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154470 | ||
938 | |a YBP Library Services |b YANK |n 10407355 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839305373 |
---|---|
_version_ | 1829094956013191168 |
adam_text | |
any_adam_object | |
author | Draxl, P. (Peter) |
author_GND | http://id.loc.gov/authorities/names/n82072623 |
author_facet | Draxl, P. (Peter) |
author_role | |
author_sort | Draxl, P. |
author_variant | p d pd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247 .D7 1983eb |
callnumber-search | QA247 .D7 1983eb |
callnumber-sort | QA 3247 D7 41983EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Conventions on Terminology; Part I. Skew Fields and Simple Rings; 1. Some ad hoc Results on Skew Fields; 2. Rings of Matrices over Skew Fields; 3. Simple Rings and Wedderburn's Main Theorem; 4. A Short Cut to Tensor Products; 5. Tensor Products and Algebras; 6. Tensor Products and Galois Theory; 7. Skolem-Noether Theorem and Centralizer Theorem; 8. The Corestriction of Algebras; Part II. Skew Fields and Brauer Groups; 9. Brauer Groups over Fields; 10. Cyclic Algebras; 11. Power Norm Residue Algebras |
ctrlnum | (OCoLC)839305373 |
dewey-full | 512/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.3 |
dewey-search | 512/.3 |
dewey-sort | 3512 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04130cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839305373</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1983 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797842880</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361003</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361001</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521272742</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521272742</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511661907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839305373</subfield><subfield code="z">(OCoLC)797842880</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA247</subfield><subfield code="b">.D7 1983eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Draxl, P.</subfield><subfield code="q">(Peter)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGBKgBKY3Bf4JxVgCwYKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82072623</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Skew fields /</subfield><subfield code="c">P.K. Draxl.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1983.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 182 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">81</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 173-178) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K, -theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Conventions on Terminology; Part I. Skew Fields and Simple Rings; 1. Some ad hoc Results on Skew Fields; 2. Rings of Matrices over Skew Fields; 3. Simple Rings and Wedderburn's Main Theorem; 4. A Short Cut to Tensor Products; 5. Tensor Products and Algebras; 6. Tensor Products and Galois Theory; 7. Skolem-Noether Theorem and Centralizer Theorem; 8. The Corestriction of Algebras; Part II. Skew Fields and Brauer Groups; 9. Brauer Groups over Fields; 10. Cyclic Algebras; 11. Power Norm Residue Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Skew fields.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85123128</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Brauer groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016501</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">K-theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85071200</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Brauer.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">K-théorie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Corps gauches.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brauer groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">K-theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skew fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4052359-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4176653-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001156-2</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Associatieve ringen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lichamen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps gauches.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brauer, Groupe de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">K-théorie.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Draxl, P. (Peter).</subfield><subfield code="t">Skew fields.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983</subfield><subfield code="z">0521272742</subfield><subfield code="w">(DLC) 82022036</subfield><subfield code="w">(OCoLC)8975480</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">81.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552431</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552431</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562387</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552431</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154470</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407355</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839305373 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:41:21Z |
institution | BVB |
isbn | 9781107361003 1107361001 |
language | English |
oclc_num | 839305373 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 182 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Draxl, P. (Peter) https://id.oclc.org/worldcat/entity/E39PCjGBKgBKY3Bf4JxVgCwYKd http://id.loc.gov/authorities/names/n82072623 Skew fields / P.K. Draxl. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983. 1 online resource (viii, 182 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 81 Includes bibliographical references (pages 173-178) and index. Print version record. The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K, -theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians. Cover; Title; Copyright; Contents; Preface; Conventions on Terminology; Part I. Skew Fields and Simple Rings; 1. Some ad hoc Results on Skew Fields; 2. Rings of Matrices over Skew Fields; 3. Simple Rings and Wedderburn's Main Theorem; 4. A Short Cut to Tensor Products; 5. Tensor Products and Algebras; 6. Tensor Products and Galois Theory; 7. Skolem-Noether Theorem and Centralizer Theorem; 8. The Corestriction of Algebras; Part II. Skew Fields and Brauer Groups; 9. Brauer Groups over Fields; 10. Cyclic Algebras; 11. Power Norm Residue Algebras Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Brauer groups. http://id.loc.gov/authorities/subjects/sh85016501 K-theory. http://id.loc.gov/authorities/subjects/sh85071200 Groupes de Brauer. K-théorie. Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Brauer groups fast K-theory fast Skew fields fast Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Quaternion gnd http://d-nb.info/gnd/4176653-2 Algebra gnd http://d-nb.info/gnd/4001156-2 Associatieve ringen. gtt Lichamen (wiskunde) gtt Corps gauches. ram Brauer, Groupe de. ram K-théorie. ram Print version: Draxl, P. (Peter). Skew fields. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983 0521272742 (DLC) 82022036 (OCoLC)8975480 London Mathematical Society lecture note series ; 81. http://id.loc.gov/authorities/names/n42015587 |
spellingShingle | Draxl, P. (Peter) Skew fields / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Conventions on Terminology; Part I. Skew Fields and Simple Rings; 1. Some ad hoc Results on Skew Fields; 2. Rings of Matrices over Skew Fields; 3. Simple Rings and Wedderburn's Main Theorem; 4. A Short Cut to Tensor Products; 5. Tensor Products and Algebras; 6. Tensor Products and Galois Theory; 7. Skolem-Noether Theorem and Centralizer Theorem; 8. The Corestriction of Algebras; Part II. Skew Fields and Brauer Groups; 9. Brauer Groups over Fields; 10. Cyclic Algebras; 11. Power Norm Residue Algebras Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Brauer groups. http://id.loc.gov/authorities/subjects/sh85016501 K-theory. http://id.loc.gov/authorities/subjects/sh85071200 Groupes de Brauer. K-théorie. Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Brauer groups fast K-theory fast Skew fields fast Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Quaternion gnd http://d-nb.info/gnd/4176653-2 Algebra gnd http://d-nb.info/gnd/4001156-2 Associatieve ringen. gtt Lichamen (wiskunde) gtt Corps gauches. ram Brauer, Groupe de. ram K-théorie. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85123128 http://id.loc.gov/authorities/subjects/sh85016501 http://id.loc.gov/authorities/subjects/sh85071200 http://d-nb.info/gnd/4052359-7 http://d-nb.info/gnd/4176653-2 http://d-nb.info/gnd/4001156-2 |
title | Skew fields / |
title_auth | Skew fields / |
title_exact_search | Skew fields / |
title_full | Skew fields / P.K. Draxl. |
title_fullStr | Skew fields / P.K. Draxl. |
title_full_unstemmed | Skew fields / P.K. Draxl. |
title_short | Skew fields / |
title_sort | skew fields |
topic | Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Brauer groups. http://id.loc.gov/authorities/subjects/sh85016501 K-theory. http://id.loc.gov/authorities/subjects/sh85071200 Groupes de Brauer. K-théorie. Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Brauer groups fast K-theory fast Skew fields fast Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Quaternion gnd http://d-nb.info/gnd/4176653-2 Algebra gnd http://d-nb.info/gnd/4001156-2 Associatieve ringen. gtt Lichamen (wiskunde) gtt Corps gauches. ram Brauer, Groupe de. ram K-théorie. ram |
topic_facet | Skew fields. Brauer groups. K-theory. Groupes de Brauer. K-théorie. Corps gauches. MATHEMATICS Algebra Intermediate. Brauer groups K-theory Skew fields Schiefkörper Quaternion Algebra Associatieve ringen. Lichamen (wiskunde) Brauer, Groupe de. |
work_keys_str_mv | AT draxlp skewfields |