Recursion theory :: its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 /
Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded,...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1980.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
45. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded, as a branch of mathematical logic. This book is a collection of advanced research/survey papers by eminent research workers in the field, based on their lectures given at the Leeds Logic Colloquium 1979. As such it provides an up-to-date view of current ideas and developments in the field of recursion theory as a whole. The individual contributions fit together naturally so as to provide an overview of all the main areas of research in the field. It will therefore be an important and invaluable source for advanced researchers and research students in mathematics and computer science (particularly in Europe, USA and USSR). |
Beschreibung: | 1 online resource (319 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107360969 110736096X 9780511629181 0511629184 1139881558 9781139881555 1107365872 9781107365872 1107370604 9781107370609 1107368332 9781107368330 1299403689 9781299403680 1107363411 9781107363410 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304926 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1980 enk ob 100 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCO |d E7B |d OCLCF |d YDXCP |d OCL |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d UKAHL |d OCL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708565402 |a 1162496917 |a 1241805597 |a 1242484009 | ||
020 | |a 9781107360969 |q (electronic bk.) | ||
020 | |a 110736096X |q (electronic bk.) | ||
020 | |a 9780511629181 |q (e-book) | ||
020 | |a 0511629184 |q (e-book) | ||
020 | |a 1139881558 | ||
020 | |a 9781139881555 | ||
020 | |a 1107365872 | ||
020 | |a 9781107365872 | ||
020 | |a 1107370604 | ||
020 | |a 9781107370609 | ||
020 | |a 1107368332 | ||
020 | |a 9781107368330 | ||
020 | |a 1299403689 | ||
020 | |a 9781299403680 | ||
020 | |a 1107363411 | ||
020 | |a 9781107363410 | ||
020 | |z 052123543X | ||
020 | |z 9780521235433 | ||
035 | |a (OCoLC)839304926 |z (OCoLC)708565402 |z (OCoLC)1162496917 |z (OCoLC)1241805597 |z (OCoLC)1242484009 | ||
050 | 4 | |a QA9.6 |b .L63 1979eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 22 | |
049 | |a MAIN | ||
111 | 2 | |a Logic Colloquium |d (1979 : |c Leeds, England) | |
245 | 1 | 0 | |a Recursion theory : |b its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / |c edited by F.R. Drake and S.S. Wainer. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1980. | ||
300 | |a 1 online resource (319 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 45 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded, as a branch of mathematical logic. This book is a collection of advanced research/survey papers by eminent research workers in the field, based on their lectures given at the Leeds Logic Colloquium 1979. As such it provides an up-to-date view of current ideas and developments in the field of recursion theory as a whole. The individual contributions fit together naturally so as to provide an overview of all the main areas of research in the field. It will therefore be an important and invaluable source for advanced researchers and research students in mathematics and computer science (particularly in Europe, USA and USSR). | ||
505 | 8 | |a Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES | |
505 | 8 | |a 2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM | |
505 | 8 | |a 7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References | |
505 | 8 | |a ""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY | |
546 | |a English. | ||
650 | 0 | |a Recursion theory |v Congresses. | |
650 | 6 | |a Théorie de la récursivité |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Recursion theory |2 fast | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Drake, F. R. |q (Frank Robert) |1 https://id.oclc.org/worldcat/entity/E39PCjCkwpPt8grFg3cvp4GYCP |0 http://id.loc.gov/authorities/names/n82132141 | |
700 | 1 | |a Wainer, S. S. | |
776 | 0 | 8 | |i Print version: |a Logic Colloquium (1979 : Leeds, England). |t Recursion theory. |d Cambridge ; New York : Cambridge University Press, 1980 |z 052123543X |w (DLC) 82180570 |w (OCoLC)502528916 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 45. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552383 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13428030 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385029 | ||
938 | |a ebrary |b EBRY |n ebr10444023 | ||
938 | |a EBSCOhost |b EBSC |n 552383 | ||
938 | |a YBP Library Services |b YANK |n 10370256 | ||
938 | |a YBP Library Services |b YANK |n 10407351 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304926 |
---|---|
_version_ | 1816882229246164992 |
adam_text | |
any_adam_object | |
author2 | Drake, F. R. (Frank Robert) Wainer, S. S. |
author2_role | |
author2_variant | f r d fr frd s s w ss ssw |
author_GND | http://id.loc.gov/authorities/names/n82132141 |
author_corporate | Logic Colloquium Leeds, England |
author_corporate_role | |
author_facet | Drake, F. R. (Frank Robert) Wainer, S. S. Logic Colloquium Leeds, England |
author_sort | Logic Colloquium Leeds, England |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.6 .L63 1979eb |
callnumber-search | QA9.6 .L63 1979eb |
callnumber-sort | QA 19.6 L63 41979EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES 2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM 7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References ""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY |
ctrlnum | (OCoLC)839304926 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06406cam a2200817 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304926</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1980 enk ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565402</subfield><subfield code="a">1162496917</subfield><subfield code="a">1241805597</subfield><subfield code="a">1242484009</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360969</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110736096X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629181</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511629184</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139881558</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139881555</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107365872</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107365872</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107370604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107370609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107368332</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107368330</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299403689</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299403680</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107363411</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107363410</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052123543X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521235433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304926</subfield><subfield code="z">(OCoLC)708565402</subfield><subfield code="z">(OCoLC)1162496917</subfield><subfield code="z">(OCoLC)1241805597</subfield><subfield code="z">(OCoLC)1242484009</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.6</subfield><subfield code="b">.L63 1979eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Logic Colloquium</subfield><subfield code="d">(1979 :</subfield><subfield code="c">Leeds, England)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recursion theory :</subfield><subfield code="b">its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 /</subfield><subfield code="c">edited by F.R. Drake and S.S. Wainer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1980.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (319 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">45</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded, as a branch of mathematical logic. This book is a collection of advanced research/survey papers by eminent research workers in the field, based on their lectures given at the Leeds Logic Colloquium 1979. As such it provides an up-to-date view of current ideas and developments in the field of recursion theory as a whole. The individual contributions fit together naturally so as to provide an overview of all the main areas of research in the field. It will therefore be an important and invaluable source for advanced researchers and research students in mathematics and computer science (particularly in Europe, USA and USSR).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Recursion theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la récursivité</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Recursion theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Drake, F. R.</subfield><subfield code="q">(Frank Robert)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCkwpPt8grFg3cvp4GYCP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82132141</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wainer, S. S.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Logic Colloquium (1979 : Leeds, England).</subfield><subfield code="t">Recursion theory.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1980</subfield><subfield code="z">052123543X</subfield><subfield code="w">(DLC) 82180570</subfield><subfield code="w">(OCoLC)502528916</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">45.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552383</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13428030</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385029</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10444023</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552383</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370256</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407351</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn839304926 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107360969 110736096X 9780511629181 0511629184 1139881558 9781139881555 1107365872 9781107365872 1107370604 9781107370609 1107368332 9781107368330 1299403689 9781299403680 1107363411 9781107363410 |
language | English |
oclc_num | 839304926 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (319 pages) |
psigel | ZDB-4-EBA |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Logic Colloquium (1979 : Leeds, England) Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / edited by F.R. Drake and S.S. Wainer. Cambridge ; New York : Cambridge University Press, 1980. 1 online resource (319 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 45 Includes bibliographical references. Print version record. Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded, as a branch of mathematical logic. This book is a collection of advanced research/survey papers by eminent research workers in the field, based on their lectures given at the Leeds Logic Colloquium 1979. As such it provides an up-to-date view of current ideas and developments in the field of recursion theory as a whole. The individual contributions fit together naturally so as to provide an overview of all the main areas of research in the field. It will therefore be an important and invaluable source for advanced researchers and research students in mathematics and computer science (particularly in Europe, USA and USSR). Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES 2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM 7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References ""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY English. Recursion theory Congresses. Théorie de la récursivité Congrès. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Recursion theory fast Conference papers and proceedings fast Drake, F. R. (Frank Robert) https://id.oclc.org/worldcat/entity/E39PCjCkwpPt8grFg3cvp4GYCP http://id.loc.gov/authorities/names/n82132141 Wainer, S. S. Print version: Logic Colloquium (1979 : Leeds, England). Recursion theory. Cambridge ; New York : Cambridge University Press, 1980 052123543X (DLC) 82180570 (OCoLC)502528916 London Mathematical Society lecture note series ; 45. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552383 Volltext |
spellingShingle | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / London Mathematical Society lecture note series ; Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES 2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM 7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References ""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY Recursion theory Congresses. Théorie de la récursivité Congrès. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Recursion theory fast |
title | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / |
title_auth | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / |
title_exact_search | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / |
title_full | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / edited by F.R. Drake and S.S. Wainer. |
title_fullStr | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / edited by F.R. Drake and S.S. Wainer. |
title_full_unstemmed | Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / edited by F.R. Drake and S.S. Wainer. |
title_short | Recursion theory : |
title_sort | recursion theory its generalisations and applications proceedings of logic colloquium 79 leeds august 1979 |
title_sub | its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 / |
topic | Recursion theory Congresses. Théorie de la récursivité Congrès. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Recursion theory fast |
topic_facet | Recursion theory Congresses. Théorie de la récursivité Congrès. MATHEMATICS Infinity. MATHEMATICS Logic. Recursion theory Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552383 |
work_keys_str_mv | AT logiccolloquiumleedsengland recursiontheoryitsgeneralisationsandapplicationsproceedingsoflogiccolloquium79leedsaugust1979 AT drakefr recursiontheoryitsgeneralisationsandapplicationsproceedingsoflogiccolloquium79leedsaugust1979 AT wainerss recursiontheoryitsgeneralisationsandapplicationsproceedingsoflogiccolloquium79leedsaugust1979 |