Solitons /:
A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1983.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
85. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory to nonlinear systems arising in the physical sciences. The essence of the book is an introduction to the method of inverse scattering. Solitary waves, cnoidal waves, conservation laws, the initial-value problem for the Korteweg-de Vries equation, the Lax method, the sine-Gordon equation and Backlund transformations are treated. The book will be useful for research workers who wish to learn about solitons as well as graduate students in mathematics, physics and engineering. |
Beschreibung: | Includes indexes. |
Beschreibung: | 1 online resource (viii, 136 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 128-132). |
ISBN: | 9781107361010 110736101X 9780511662843 051166284X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304784 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1983 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d OCLCO |d K6U |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
019 | |a 715185728 | ||
020 | |a 9781107361010 |q (electronic bk.) | ||
020 | |a 110736101X |q (electronic bk.) | ||
020 | |a 9780511662843 |q (e-book) | ||
020 | |a 051166284X |q (e-book) | ||
020 | |z 0521274222 | ||
020 | |z 9780521274227 | ||
035 | |a (OCoLC)839304784 |z (OCoLC)715185728 | ||
050 | 4 | |a QA927 |b .D69 1983eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 532/.0593 |2 22 | |
084 | |a 31.45 |2 bcl | ||
084 | |a 31.43 |2 bcl | ||
084 | |a 33.14 |2 bcl | ||
084 | |a 33.20 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 950 |2 rvk | ||
084 | |a MAT 357f |2 stub | ||
084 | |a MAT 354f |2 stub | ||
084 | |a PHY 013f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Drazin, P. G. | |
245 | 1 | 0 | |a Solitons / |c P.G. Drazin. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1983. | ||
300 | |a 1 online resource (viii, 136 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 85 | |
504 | |a Includes bibliographical references (pages 128-132). | ||
500 | |a Includes indexes. | ||
588 | 0 | |a Print version record. | |
520 | |a A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory to nonlinear systems arising in the physical sciences. The essence of the book is an introduction to the method of inverse scattering. Solitary waves, cnoidal waves, conservation laws, the initial-value problem for the Korteweg-de Vries equation, the Lax method, the sine-Gordon equation and Backlund transformations are treated. The book will be useful for research workers who wish to learn about solitons as well as graduate students in mathematics, physics and engineering. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Chapter 1 TEE KORTEWEG-DE VRIES EQUATION; 1. The discovery of solitary waves; 2. Fundamental ideas; 3. The discovery of soliton interactions; 4. Applications of the KdV equation; Problems; CHAPTER 2 CNOIDAL WAVES; 1. Wave solutions of the KdV solution; 2. Solitary waves; 3. General waves of permanent form; 4. Description of waves in terms of elliptic functions; 5. Infinitesimal waves; 6. Solitary waves again; Problems; Chapter 3 CONSERVATION LAWS; 1. Fundamental ideas; 2. Gardner's transformation; Problems | |
505 | 8 | |a Chapter 4 THE INITIAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION1. The problem; 2. Sketch of the method of inverse scattering; 3. The scattering problem; 4. The evolution equation; 5. Solution of the scattering problem for t> 0; 6. The inverse scattering problem; 7. Qualitative character of the solution; 8. Example: the delta-function potential; 9. Example: g(x) = -- 2sech2x; 10. Example: g(x) = -- 6sech2x; 11. Examples: sech-squared potentials; 12. Examples: some numerical results; 13. Reflectionless potentials; Chapter 5 THE LAX METHOD | |
505 | 8 | |a 1. Description of the method in terms of operatorsProblems; Chapter 6 THE SINE-GORDON EQUATION; 1. Introduction; 2. Waves and solitons; 3. Some other simple explicit solutions; 4. The interaction of two solitons; 5. A breather; 6. The method of inverse scattering; Problems; Chapter 7 BACKLUND TRANSFORMATIONS; 1. Introduction; 2. The sine-Gordon equation; 3. The KdV equation; Problems; 1. Epilogue; Appendix A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE SCATTERING; Bibliography and author index; Motion picture index; Subject index | |
650 | 0 | |a Solitons. |0 http://id.loc.gov/authorities/subjects/sh85124672 | |
650 | 6 | |a Solitons. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Solitons |2 fast | |
650 | 7 | |a Soliton |2 gnd |0 http://d-nb.info/gnd/4135213-0 | |
650 | 1 | 7 | |a Solitons. |2 gtt |
650 | 1 | 7 | |a Mathematische fysica. |2 gtt |
650 | 7 | |a Solitons. |2 ram | |
776 | 0 | 8 | |i Print version: |a Drazin, P.G. |t Solitons. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983 |z 0521274222 |w (DLC) 83007170 |w (OCoLC)9442461 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 85. |0 http://id.loc.gov/authorities/names/n42015587 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552525 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552525 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10455650 | ||
938 | |a EBSCOhost |b EBSC |n 552525 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154709 | ||
938 | |a YBP Library Services |b YANK |n 10407356 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304784 |
---|---|
_version_ | 1829094955873730560 |
adam_text | |
any_adam_object | |
author | Drazin, P. G. |
author_facet | Drazin, P. G. |
author_role | |
author_sort | Drazin, P. G. |
author_variant | p g d pg pgd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA927 |
callnumber-raw | QA927 .D69 1983eb |
callnumber-search | QA927 .D69 1983eb |
callnumber-sort | QA 3927 D69 41983EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 950 |
classification_tum | MAT 357f MAT 354f PHY 013f |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Chapter 1 TEE KORTEWEG-DE VRIES EQUATION; 1. The discovery of solitary waves; 2. Fundamental ideas; 3. The discovery of soliton interactions; 4. Applications of the KdV equation; Problems; CHAPTER 2 CNOIDAL WAVES; 1. Wave solutions of the KdV solution; 2. Solitary waves; 3. General waves of permanent form; 4. Description of waves in terms of elliptic functions; 5. Infinitesimal waves; 6. Solitary waves again; Problems; Chapter 3 CONSERVATION LAWS; 1. Fundamental ideas; 2. Gardner's transformation; Problems Chapter 4 THE INITIAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION1. The problem; 2. Sketch of the method of inverse scattering; 3. The scattering problem; 4. The evolution equation; 5. Solution of the scattering problem for t> 0; 6. The inverse scattering problem; 7. Qualitative character of the solution; 8. Example: the delta-function potential; 9. Example: g(x) = -- 2sech2x; 10. Example: g(x) = -- 6sech2x; 11. Examples: sech-squared potentials; 12. Examples: some numerical results; 13. Reflectionless potentials; Chapter 5 THE LAX METHOD 1. Description of the method in terms of operatorsProblems; Chapter 6 THE SINE-GORDON EQUATION; 1. Introduction; 2. Waves and solitons; 3. Some other simple explicit solutions; 4. The interaction of two solitons; 5. A breather; 6. The method of inverse scattering; Problems; Chapter 7 BACKLUND TRANSFORMATIONS; 1. Introduction; 2. The sine-Gordon equation; 3. The KdV equation; Problems; 1. Epilogue; Appendix A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE SCATTERING; Bibliography and author index; Motion picture index; Subject index |
ctrlnum | (OCoLC)839304784 |
dewey-full | 532/.0593 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0593 |
dewey-search | 532/.0593 |
dewey-sort | 3532 3593 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05128cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304784</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1983 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715185728</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361010</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110736101X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662843</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051166284X</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521274222</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521274227</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304784</subfield><subfield code="z">(OCoLC)715185728</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA927</subfield><subfield code="b">.D69 1983eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">532/.0593</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.43</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.14</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.20</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drazin, P. G.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons /</subfield><subfield code="c">P.G. Drazin.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1983.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 136 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">85</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 128-132).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory to nonlinear systems arising in the physical sciences. The essence of the book is an introduction to the method of inverse scattering. Solitary waves, cnoidal waves, conservation laws, the initial-value problem for the Korteweg-de Vries equation, the Lax method, the sine-Gordon equation and Backlund transformations are treated. The book will be useful for research workers who wish to learn about solitons as well as graduate students in mathematics, physics and engineering.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 1 TEE KORTEWEG-DE VRIES EQUATION; 1. The discovery of solitary waves; 2. Fundamental ideas; 3. The discovery of soliton interactions; 4. Applications of the KdV equation; Problems; CHAPTER 2 CNOIDAL WAVES; 1. Wave solutions of the KdV solution; 2. Solitary waves; 3. General waves of permanent form; 4. Description of waves in terms of elliptic functions; 5. Infinitesimal waves; 6. Solitary waves again; Problems; Chapter 3 CONSERVATION LAWS; 1. Fundamental ideas; 2. Gardner's transformation; Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4 THE INITIAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION1. The problem; 2. Sketch of the method of inverse scattering; 3. The scattering problem; 4. The evolution equation; 5. Solution of the scattering problem for t> 0; 6. The inverse scattering problem; 7. Qualitative character of the solution; 8. Example: the delta-function potential; 9. Example: g(x) = -- 2sech2x; 10. Example: g(x) = -- 6sech2x; 11. Examples: sech-squared potentials; 12. Examples: some numerical results; 13. Reflectionless potentials; Chapter 5 THE LAX METHOD</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Description of the method in terms of operatorsProblems; Chapter 6 THE SINE-GORDON EQUATION; 1. Introduction; 2. Waves and solitons; 3. Some other simple explicit solutions; 4. The interaction of two solitons; 5. A breather; 6. The method of inverse scattering; Problems; Chapter 7 BACKLUND TRANSFORMATIONS; 1. Introduction; 2. The sine-Gordon equation; 3. The KdV equation; Problems; 1. Epilogue; Appendix A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE SCATTERING; Bibliography and author index; Motion picture index; Subject index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solitons.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124672</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solitons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Soliton</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4135213-0</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Solitons.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Mathematische fysica.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Drazin, P.G.</subfield><subfield code="t">Solitons.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983</subfield><subfield code="z">0521274222</subfield><subfield code="w">(DLC) 83007170</subfield><subfield code="w">(OCoLC)9442461</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">85.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552525</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552525</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10455650</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552525</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154709</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407356</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839304784 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:21Z |
institution | BVB |
isbn | 9781107361010 110736101X 9780511662843 051166284X |
language | English |
oclc_num | 839304784 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 136 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Drazin, P. G. Solitons / P.G. Drazin. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983. 1 online resource (viii, 136 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 85 Includes bibliographical references (pages 128-132). Includes indexes. Print version record. A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory to nonlinear systems arising in the physical sciences. The essence of the book is an introduction to the method of inverse scattering. Solitary waves, cnoidal waves, conservation laws, the initial-value problem for the Korteweg-de Vries equation, the Lax method, the sine-Gordon equation and Backlund transformations are treated. The book will be useful for research workers who wish to learn about solitons as well as graduate students in mathematics, physics and engineering. Cover; Title; Copyright; Contents; Preface; Chapter 1 TEE KORTEWEG-DE VRIES EQUATION; 1. The discovery of solitary waves; 2. Fundamental ideas; 3. The discovery of soliton interactions; 4. Applications of the KdV equation; Problems; CHAPTER 2 CNOIDAL WAVES; 1. Wave solutions of the KdV solution; 2. Solitary waves; 3. General waves of permanent form; 4. Description of waves in terms of elliptic functions; 5. Infinitesimal waves; 6. Solitary waves again; Problems; Chapter 3 CONSERVATION LAWS; 1. Fundamental ideas; 2. Gardner's transformation; Problems Chapter 4 THE INITIAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION1. The problem; 2. Sketch of the method of inverse scattering; 3. The scattering problem; 4. The evolution equation; 5. Solution of the scattering problem for t> 0; 6. The inverse scattering problem; 7. Qualitative character of the solution; 8. Example: the delta-function potential; 9. Example: g(x) = -- 2sech2x; 10. Example: g(x) = -- 6sech2x; 11. Examples: sech-squared potentials; 12. Examples: some numerical results; 13. Reflectionless potentials; Chapter 5 THE LAX METHOD 1. Description of the method in terms of operatorsProblems; Chapter 6 THE SINE-GORDON EQUATION; 1. Introduction; 2. Waves and solitons; 3. Some other simple explicit solutions; 4. The interaction of two solitons; 5. A breather; 6. The method of inverse scattering; Problems; Chapter 7 BACKLUND TRANSFORMATIONS; 1. Introduction; 2. The sine-Gordon equation; 3. The KdV equation; Problems; 1. Epilogue; Appendix A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE SCATTERING; Bibliography and author index; Motion picture index; Subject index Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Solitons. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Soliton gnd http://d-nb.info/gnd/4135213-0 Solitons. gtt Mathematische fysica. gtt Solitons. ram Print version: Drazin, P.G. Solitons. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983 0521274222 (DLC) 83007170 (OCoLC)9442461 London Mathematical Society lecture note series ; 85. http://id.loc.gov/authorities/names/n42015587 |
spellingShingle | Drazin, P. G. Solitons / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Chapter 1 TEE KORTEWEG-DE VRIES EQUATION; 1. The discovery of solitary waves; 2. Fundamental ideas; 3. The discovery of soliton interactions; 4. Applications of the KdV equation; Problems; CHAPTER 2 CNOIDAL WAVES; 1. Wave solutions of the KdV solution; 2. Solitary waves; 3. General waves of permanent form; 4. Description of waves in terms of elliptic functions; 5. Infinitesimal waves; 6. Solitary waves again; Problems; Chapter 3 CONSERVATION LAWS; 1. Fundamental ideas; 2. Gardner's transformation; Problems Chapter 4 THE INITIAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION1. The problem; 2. Sketch of the method of inverse scattering; 3. The scattering problem; 4. The evolution equation; 5. Solution of the scattering problem for t> 0; 6. The inverse scattering problem; 7. Qualitative character of the solution; 8. Example: the delta-function potential; 9. Example: g(x) = -- 2sech2x; 10. Example: g(x) = -- 6sech2x; 11. Examples: sech-squared potentials; 12. Examples: some numerical results; 13. Reflectionless potentials; Chapter 5 THE LAX METHOD 1. Description of the method in terms of operatorsProblems; Chapter 6 THE SINE-GORDON EQUATION; 1. Introduction; 2. Waves and solitons; 3. Some other simple explicit solutions; 4. The interaction of two solitons; 5. A breather; 6. The method of inverse scattering; Problems; Chapter 7 BACKLUND TRANSFORMATIONS; 1. Introduction; 2. The sine-Gordon equation; 3. The KdV equation; Problems; 1. Epilogue; Appendix A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE SCATTERING; Bibliography and author index; Motion picture index; Subject index Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Solitons. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Soliton gnd http://d-nb.info/gnd/4135213-0 Solitons. gtt Mathematische fysica. gtt Solitons. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85124672 http://d-nb.info/gnd/4135213-0 |
title | Solitons / |
title_auth | Solitons / |
title_exact_search | Solitons / |
title_full | Solitons / P.G. Drazin. |
title_fullStr | Solitons / P.G. Drazin. |
title_full_unstemmed | Solitons / P.G. Drazin. |
title_short | Solitons / |
title_sort | solitons |
topic | Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Solitons. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Soliton gnd http://d-nb.info/gnd/4135213-0 Solitons. gtt Mathematische fysica. gtt Solitons. ram |
topic_facet | Solitons. SCIENCE Waves & Wave Mechanics. Solitons Soliton Mathematische fysica. |
work_keys_str_mv | AT drazinpg solitons |