Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation /:
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important appli...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2003.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 154. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis. |
Beschreibung: | 1 online resource (xii, 265 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 255-258) and index. |
ISBN: | 9781400837182 1400837189 1299443451 9781299443457 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304452 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s2003 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d ORZ |d E7B |d JSTOR |d N$T |d OCLCF |d IDEBK |d YDXCP |d OCLCQ |d COO |d DEBBG |d OCLCQ |d LOA |d OCLCQ |d OCLCO |d UIU |d COCUF |d AGLDB |d DEBSZ |d MOR |d CCO |d PIFAG |d OTZ |d WT2 |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d NRAMU |d INT |d REC |d VT2 |d OCLCO |d AU@ |d OCLCO |d OCLCQ |d WYU |d LVT |d OCLCQ |d M8D |d OCLCO |d UKAHL |d OCLCQ |d HS0 |d UKCRE |d VLB |d MM9 |d INARC |d AJS |d OCLCQ |d TUHNV |d OCLCO |d OCLCQ |d LUU |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBA3Y6730 |2 bnb | ||
019 | |a 779498421 |a 842893546 |a 960200391 |a 961599643 |a 962703676 |a 988483659 |a 991959820 |a 994989260 |a 1037760155 |a 1038691304 |a 1045485336 |a 1055400941 |a 1064087023 |a 1153517435 |a 1181900694 |a 1228577260 |a 1228595212 |a 1243616004 |a 1258399456 | ||
020 | |a 9781400837182 |q (electronic bk.) | ||
020 | |a 1400837189 |q (electronic bk.) | ||
020 | |a 1299443451 |q (ebk) | ||
020 | |a 9781299443457 |q (ebk) | ||
020 | |z 0691114838 | ||
020 | |z 9780691114835 | ||
020 | |z 069111482X | ||
020 | |z 9780691114828 | ||
024 | 7 | |a 10.1515/9781400837182 |2 doi | |
035 | |a (OCoLC)839304452 |z (OCoLC)779498421 |z (OCoLC)842893546 |z (OCoLC)960200391 |z (OCoLC)961599643 |z (OCoLC)962703676 |z (OCoLC)988483659 |z (OCoLC)991959820 |z (OCoLC)994989260 |z (OCoLC)1037760155 |z (OCoLC)1038691304 |z (OCoLC)1045485336 |z (OCoLC)1055400941 |z (OCoLC)1064087023 |z (OCoLC)1153517435 |z (OCoLC)1181900694 |z (OCoLC)1228577260 |z (OCoLC)1228595212 |z (OCoLC)1243616004 |z (OCoLC)1258399456 | ||
037 | |a 22573/ctt2f0vrc |b JSTOR | ||
050 | 4 | |a QC174.26.W28 |b K35 2003eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
072 | 7 | |a MAT040000 |2 bisacsh | |
082 | 7 | |a 530.12/4 |2 22 | |
084 | |a 31.81 |2 bcl | ||
084 | |a SI 830 |2 rvk | ||
084 | |a SK 540 |2 rvk | ||
084 | |a MAT 354f |2 stub | ||
084 | |a MAT 356f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Kamvissis, Spyridon. | |
245 | 1 | 0 | |a Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / |c Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2003. | ||
300 | |a 1 online resource (xii, 265 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
380 | |a Bibliography | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 154 | |
504 | |a Includes bibliographical references (pages 255-258) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis. | ||
546 | |a In English. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems | |
505 | 8 | |a Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index | |
650 | 0 | |a Schrödinger equation. |0 http://id.loc.gov/authorities/subjects/sh85118495 | |
650 | 6 | |a Équation de Schrödinger. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Schrödinger equation |2 fast | |
650 | 7 | |a Nichtlineare Schrödinger-Gleichung |2 gnd |0 http://d-nb.info/gnd/4278277-6 | |
650 | 7 | |a Schrödinger-Gleichung |2 gnd |0 http://d-nb.info/gnd/4053332-3 | |
650 | 7 | |a Soliton |2 gnd |0 http://d-nb.info/gnd/4135213-0 | |
650 | 1 | 7 | |a Schrödingervergelijking. |2 gtt |
650 | 1 | 7 | |a Solitons. |2 gtt |
700 | 1 | |a McLaughlin, K. T-R |q (Kenneth T-R), |d 1969- |1 https://id.oclc.org/worldcat/entity/E39PCjvYrb76pwdVyCwjHDCw3P |0 http://id.loc.gov/authorities/names/n97090279 | |
700 | 1 | |a Miller, Peter D. |q (Peter David), |d 1967- |1 https://id.oclc.org/worldcat/entity/E39PCjy7Tjw4gcbwmH3whV8Ryq |0 http://id.loc.gov/authorities/names/nb2003025352 | |
776 | 0 | 8 | |i Print version: |a Kamvissis, Spyridon. |t Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. |d Princeton, N.J. : Princeton University Press, ©2003 |z 0691114838 |w (DLC) 2003108056 |w (OCoLC)51780336 |
830 | 0 | |a Annals of mathematics studies ; |v no. 154. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=563758 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28126600 | ||
938 | |a ebrary |b EBRY |n ebr10682501 | ||
938 | |a EBSCOhost |b EBSC |n 563758 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25212546 | ||
938 | |a Internet Archive |b INAR |n semiclassicalsol0000kamv | ||
938 | |a YBP Library Services |b YANK |n 10438585 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304452 |
---|---|
_version_ | 1816882229070004225 |
adam_text | |
any_adam_object | |
author | Kamvissis, Spyridon |
author2 | McLaughlin, K. T-R (Kenneth T-R), 1969- Miller, Peter D. (Peter David), 1967- |
author2_role | |
author2_variant | k t r m ktr ktrm p d m pd pdm |
author_GND | http://id.loc.gov/authorities/names/n97090279 http://id.loc.gov/authorities/names/nb2003025352 |
author_facet | Kamvissis, Spyridon McLaughlin, K. T-R (Kenneth T-R), 1969- Miller, Peter D. (Peter David), 1967- |
author_role | |
author_sort | Kamvissis, Spyridon |
author_variant | s k sk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.26.W28 K35 2003eb |
callnumber-search | QC174.26.W28 K35 2003eb |
callnumber-sort | QC 3174.26 W28 K35 42003EB |
callnumber-subject | QC - Physics |
classification_rvk | SI 830 SK 540 |
classification_tum | MAT 354f MAT 356f |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index |
ctrlnum | (OCoLC)839304452 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06808cam a2200841 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304452</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s2003 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">ORZ</subfield><subfield code="d">E7B</subfield><subfield code="d">JSTOR</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UIU</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">WT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLB</subfield><subfield code="d">MM9</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUHNV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA3Y6730</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">779498421</subfield><subfield code="a">842893546</subfield><subfield code="a">960200391</subfield><subfield code="a">961599643</subfield><subfield code="a">962703676</subfield><subfield code="a">988483659</subfield><subfield code="a">991959820</subfield><subfield code="a">994989260</subfield><subfield code="a">1037760155</subfield><subfield code="a">1038691304</subfield><subfield code="a">1045485336</subfield><subfield code="a">1055400941</subfield><subfield code="a">1064087023</subfield><subfield code="a">1153517435</subfield><subfield code="a">1181900694</subfield><subfield code="a">1228577260</subfield><subfield code="a">1228595212</subfield><subfield code="a">1243616004</subfield><subfield code="a">1258399456</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837182</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837189</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299443451</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299443457</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691114838</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691114835</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">069111482X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691114828</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837182</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304452</subfield><subfield code="z">(OCoLC)779498421</subfield><subfield code="z">(OCoLC)842893546</subfield><subfield code="z">(OCoLC)960200391</subfield><subfield code="z">(OCoLC)961599643</subfield><subfield code="z">(OCoLC)962703676</subfield><subfield code="z">(OCoLC)988483659</subfield><subfield code="z">(OCoLC)991959820</subfield><subfield code="z">(OCoLC)994989260</subfield><subfield code="z">(OCoLC)1037760155</subfield><subfield code="z">(OCoLC)1038691304</subfield><subfield code="z">(OCoLC)1045485336</subfield><subfield code="z">(OCoLC)1055400941</subfield><subfield code="z">(OCoLC)1064087023</subfield><subfield code="z">(OCoLC)1153517435</subfield><subfield code="z">(OCoLC)1181900694</subfield><subfield code="z">(OCoLC)1228577260</subfield><subfield code="z">(OCoLC)1228595212</subfield><subfield code="z">(OCoLC)1243616004</subfield><subfield code="z">(OCoLC)1258399456</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt2f0vrc</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.26.W28</subfield><subfield code="b">K35 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.81</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 356f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kamvissis, Spyridon.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation /</subfield><subfield code="c">Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 265 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="380" ind1=" " ind2=" "><subfield code="a">Bibliography</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 154</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 255-258) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Schrödinger equation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85118495</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équation de Schrödinger.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schrödinger equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4278277-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4053332-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Soliton</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4135213-0</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Schrödingervergelijking.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Solitons.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McLaughlin, K. T-R</subfield><subfield code="q">(Kenneth T-R),</subfield><subfield code="d">1969-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvYrb76pwdVyCwjHDCw3P</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97090279</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miller, Peter D.</subfield><subfield code="q">(Peter David),</subfield><subfield code="d">1967-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjy7Tjw4gcbwmH3whV8Ryq</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2003025352</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kamvissis, Spyridon.</subfield><subfield code="t">Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2003</subfield><subfield code="z">0691114838</subfield><subfield code="w">(DLC) 2003108056</subfield><subfield code="w">(OCoLC)51780336</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 154.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=563758</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28126600</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10682501</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">563758</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25212546</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">semiclassicalsol0000kamv</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10438585</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839304452 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781400837182 1400837189 1299443451 9781299443457 |
language | English |
oclc_num | 839304452 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 265 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Kamvissis, Spyridon. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. Princeton, N.J. : Princeton University Press, ©2003. 1 online resource (xii, 265 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Bibliography Annals of mathematics studies ; no. 154 Includes bibliographical references (pages 255-258) and index. Print version record. This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis. In English. Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Équation de Schrödinger. SCIENCE Waves & Wave Mechanics. bisacsh MATHEMATICS Complex Analysis. bisacsh Schrödinger equation fast Nichtlineare Schrödinger-Gleichung gnd http://d-nb.info/gnd/4278277-6 Schrödinger-Gleichung gnd http://d-nb.info/gnd/4053332-3 Soliton gnd http://d-nb.info/gnd/4135213-0 Schrödingervergelijking. gtt Solitons. gtt McLaughlin, K. T-R (Kenneth T-R), 1969- https://id.oclc.org/worldcat/entity/E39PCjvYrb76pwdVyCwjHDCw3P http://id.loc.gov/authorities/names/n97090279 Miller, Peter D. (Peter David), 1967- https://id.oclc.org/worldcat/entity/E39PCjy7Tjw4gcbwmH3whV8Ryq http://id.loc.gov/authorities/names/nb2003025352 Print version: Kamvissis, Spyridon. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Princeton, N.J. : Princeton University Press, ©2003 0691114838 (DLC) 2003108056 (OCoLC)51780336 Annals of mathematics studies ; no. 154. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=563758 Volltext |
spellingShingle | Kamvissis, Spyridon Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / Annals of mathematics studies ; Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Équation de Schrödinger. SCIENCE Waves & Wave Mechanics. bisacsh MATHEMATICS Complex Analysis. bisacsh Schrödinger equation fast Nichtlineare Schrödinger-Gleichung gnd http://d-nb.info/gnd/4278277-6 Schrödinger-Gleichung gnd http://d-nb.info/gnd/4053332-3 Soliton gnd http://d-nb.info/gnd/4135213-0 Schrödingervergelijking. gtt Solitons. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85118495 http://d-nb.info/gnd/4278277-6 http://d-nb.info/gnd/4053332-3 http://d-nb.info/gnd/4135213-0 |
title | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / |
title_auth | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / |
title_exact_search | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / |
title_full | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. |
title_fullStr | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. |
title_full_unstemmed | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. |
title_short | Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation / |
title_sort | semiclassical soliton ensembles for the focusing nonlinear schrodinger equation |
topic | Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Équation de Schrödinger. SCIENCE Waves & Wave Mechanics. bisacsh MATHEMATICS Complex Analysis. bisacsh Schrödinger equation fast Nichtlineare Schrödinger-Gleichung gnd http://d-nb.info/gnd/4278277-6 Schrödinger-Gleichung gnd http://d-nb.info/gnd/4053332-3 Soliton gnd http://d-nb.info/gnd/4135213-0 Schrödingervergelijking. gtt Solitons. gtt |
topic_facet | Schrödinger equation. Équation de Schrödinger. SCIENCE Waves & Wave Mechanics. MATHEMATICS Complex Analysis. Schrödinger equation Nichtlineare Schrödinger-Gleichung Schrödinger-Gleichung Soliton Schrödingervergelijking. Solitons. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=563758 |
work_keys_str_mv | AT kamvississpyridon semiclassicalsolitonensemblesforthefocusingnonlinearschrodingerequation AT mclaughlinktr semiclassicalsolitonensemblesforthefocusingnonlinearschrodingerequation AT millerpeterd semiclassicalsolitonensemblesforthefocusingnonlinearschrodingerequation |