Van der Corputʼs method of exponential sums /:
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professional...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1991.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
126. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem. |
Beschreibung: | 1 online resource (119 pages) |
Bibliographie: | Includes bibliographical references (pages 117-119) and index. |
ISBN: | 9781107361386 1107361389 9780511661976 0511661975 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304363 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1991 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d YDX |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d OCLCO |d K6U |d AJS |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 715181287 | ||
020 | |a 9781107361386 |q (electronic bk.) | ||
020 | |a 1107361389 |q (electronic bk.) | ||
020 | |a 9780511661976 |q (e-book) | ||
020 | |a 0511661975 |q (e-book) | ||
020 | |z 0521339278 | ||
020 | |z 9780521339278 | ||
035 | |a (OCoLC)839304363 |z (OCoLC)715181287 | ||
050 | 4 | |a QA246.7 |b .G73 1991eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.73 |2 22 | |
084 | |a 31.14 |2 bcl | ||
084 | |a *11-02 |2 msc | ||
084 | |a 11L07 |2 msc | ||
084 | |a 11M26 |2 msc | ||
084 | |a 11N37 |2 msc | ||
084 | |a 11P21 |2 msc | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 470 |2 rvk | ||
084 | |a SK 180 |2 rvk | ||
084 | |a MAT 109f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Graham, S. W. | |
245 | 1 | 0 | |a Van der Corputʼs method of exponential sums / |c S.W. Graham and G. Kolesnik. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1991. | ||
300 | |a 1 online resource (119 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 126 | |
504 | |a Includes bibliographical references (pages 117-119) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Basic Definitions; 1.2 Historical Overview; 1.3 Two Dimensional Sums; 1.4 The method of Bombieri and Iwaniec; 1.5 Notation; 2 The Simplest Van Der Corput Estimates; 2.1 Estimates Using First and Second Derivatives; 2.2 Some Simple Inequalities; 2.3 The Weyl-van der Corput Inequality; 2.4 Iterating Weyl-Van der Corput; 2.5 Upper Bounds for the Riemann Zeta-function; 2.6 Notes; 3 The Method of Exponent Pairs; 3.1 Introduction; 3.2 Lemmas on Exponential Integrals; 3.3 Heuristic Arguments and Definitions; 3.4 Proof of the A-Process | |
505 | 8 | |a 7.2 Preliminaries7.3 The Airy-Hardy Integral; 7.4 Gauss Sums; 7.5 Lemmas on Rational Points; 7.6 Semicubical Powers of Integers; 7.7 Proof of the Theorem; 7.8 Notes; Appendix; Bibliography; Index | |
650 | 0 | |a Exponential sums. |0 http://id.loc.gov/authorities/subjects/sh87005567 | |
650 | 6 | |a Sommes exponentielles. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Exponential sums |2 fast | |
650 | 7 | |a Exponentialsumme |2 gnd |0 http://d-nb.info/gnd/4201355-0 | |
650 | 7 | |a Schranke |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4199965-4 | |
650 | 7 | |a Schätztheorie |2 gnd |0 http://d-nb.info/gnd/4121608-8 | |
650 | 1 | 7 | |a Exponentiële sommen. |2 gtt |
650 | 7 | |a Sommes exponentielles. |2 ram | |
700 | 1 | |a Kolesnik, G. | |
758 | |i has work: |a Van der corput's method of exponential sums (Text) |1 https://id.oclc.org/worldcat/entity/E39PCXQd4G7bXYCh8R6P89YWym |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Graham, S.W. |t Van der Corputʼs method of exponential sums. |d Cambridge ; New York : Cambridge University Press, 1991 |z 0521339278 |w (DLC) 91146734 |w (OCoLC)23068135 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 126. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552437 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10454450 | ||
938 | |a EBSCOhost |b EBSC |n 552437 | ||
938 | |a YBP Library Services |b YANK |n 10370297 | ||
938 | |a YBP Library Services |b YANK |n 10407392 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304363 |
---|---|
_version_ | 1816882229027012608 |
adam_text | |
any_adam_object | |
author | Graham, S. W. |
author2 | Kolesnik, G. |
author2_role | |
author2_variant | g k gk |
author_facet | Graham, S. W. Kolesnik, G. |
author_role | |
author_sort | Graham, S. W. |
author_variant | s w g sw swg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246.7 .G73 1991eb |
callnumber-search | QA246.7 .G73 1991eb |
callnumber-sort | QA 3246.7 G73 41991EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 470 SK 180 |
classification_tum | MAT 109f |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Basic Definitions; 1.2 Historical Overview; 1.3 Two Dimensional Sums; 1.4 The method of Bombieri and Iwaniec; 1.5 Notation; 2 The Simplest Van Der Corput Estimates; 2.1 Estimates Using First and Second Derivatives; 2.2 Some Simple Inequalities; 2.3 The Weyl-van der Corput Inequality; 2.4 Iterating Weyl-Van der Corput; 2.5 Upper Bounds for the Riemann Zeta-function; 2.6 Notes; 3 The Method of Exponent Pairs; 3.1 Introduction; 3.2 Lemmas on Exponential Integrals; 3.3 Heuristic Arguments and Definitions; 3.4 Proof of the A-Process 7.2 Preliminaries7.3 The Airy-Hardy Integral; 7.4 Gauss Sums; 7.5 Lemmas on Rational Points; 7.6 Semicubical Powers of Integers; 7.7 Proof of the Theorem; 7.8 Notes; Appendix; Bibliography; Index |
ctrlnum | (OCoLC)839304363 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04440cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304363</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1991 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715181287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361386</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361389</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661976</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511661975</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521339278</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521339278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304363</subfield><subfield code="z">(OCoLC)715181287</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA246.7</subfield><subfield code="b">.G73 1991eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*11-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11L07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11M26</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11N37</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11P21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 109f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graham, S. W.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Van der Corputʼs method of exponential sums /</subfield><subfield code="c">S.W. Graham and G. Kolesnik.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1991.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (119 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">126</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 117-119) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Basic Definitions; 1.2 Historical Overview; 1.3 Two Dimensional Sums; 1.4 The method of Bombieri and Iwaniec; 1.5 Notation; 2 The Simplest Van Der Corput Estimates; 2.1 Estimates Using First and Second Derivatives; 2.2 Some Simple Inequalities; 2.3 The Weyl-van der Corput Inequality; 2.4 Iterating Weyl-Van der Corput; 2.5 Upper Bounds for the Riemann Zeta-function; 2.6 Notes; 3 The Method of Exponent Pairs; 3.1 Introduction; 3.2 Lemmas on Exponential Integrals; 3.3 Heuristic Arguments and Definitions; 3.4 Proof of the A-Process</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Preliminaries7.3 The Airy-Hardy Integral; 7.4 Gauss Sums; 7.5 Lemmas on Rational Points; 7.6 Semicubical Powers of Integers; 7.7 Proof of the Theorem; 7.8 Notes; Appendix; Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Exponential sums.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87005567</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sommes exponentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exponential sums</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exponentialsumme</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4201355-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schranke</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4199965-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4121608-8</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Exponentiële sommen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sommes exponentielles.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolesnik, G.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Van der corput's method of exponential sums (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCXQd4G7bXYCh8R6P89YWym</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Graham, S.W.</subfield><subfield code="t">Van der Corputʼs method of exponential sums.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1991</subfield><subfield code="z">0521339278</subfield><subfield code="w">(DLC) 91146734</subfield><subfield code="w">(OCoLC)23068135</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">126.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552437</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10454450</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552437</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370297</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407392</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839304363 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361386 1107361389 9780511661976 0511661975 |
language | English |
oclc_num | 839304363 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (119 pages) |
psigel | ZDB-4-EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Graham, S. W. Van der Corputʼs method of exponential sums / S.W. Graham and G. Kolesnik. Cambridge ; New York : Cambridge University Press, 1991. 1 online resource (119 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 126 Includes bibliographical references (pages 117-119) and index. Print version record. This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem. Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Basic Definitions; 1.2 Historical Overview; 1.3 Two Dimensional Sums; 1.4 The method of Bombieri and Iwaniec; 1.5 Notation; 2 The Simplest Van Der Corput Estimates; 2.1 Estimates Using First and Second Derivatives; 2.2 Some Simple Inequalities; 2.3 The Weyl-van der Corput Inequality; 2.4 Iterating Weyl-Van der Corput; 2.5 Upper Bounds for the Riemann Zeta-function; 2.6 Notes; 3 The Method of Exponent Pairs; 3.1 Introduction; 3.2 Lemmas on Exponential Integrals; 3.3 Heuristic Arguments and Definitions; 3.4 Proof of the A-Process 7.2 Preliminaries7.3 The Airy-Hardy Integral; 7.4 Gauss Sums; 7.5 Lemmas on Rational Points; 7.6 Semicubical Powers of Integers; 7.7 Proof of the Theorem; 7.8 Notes; Appendix; Bibliography; Index Exponential sums. http://id.loc.gov/authorities/subjects/sh87005567 Sommes exponentielles. MATHEMATICS Number Theory. bisacsh Exponential sums fast Exponentialsumme gnd http://d-nb.info/gnd/4201355-0 Schranke Mathematik gnd http://d-nb.info/gnd/4199965-4 Schätztheorie gnd http://d-nb.info/gnd/4121608-8 Exponentiële sommen. gtt Sommes exponentielles. ram Kolesnik, G. has work: Van der corput's method of exponential sums (Text) https://id.oclc.org/worldcat/entity/E39PCXQd4G7bXYCh8R6P89YWym https://id.oclc.org/worldcat/ontology/hasWork Print version: Graham, S.W. Van der Corputʼs method of exponential sums. Cambridge ; New York : Cambridge University Press, 1991 0521339278 (DLC) 91146734 (OCoLC)23068135 London Mathematical Society lecture note series ; 126. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552437 Volltext |
spellingShingle | Graham, S. W. Van der Corputʼs method of exponential sums / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Basic Definitions; 1.2 Historical Overview; 1.3 Two Dimensional Sums; 1.4 The method of Bombieri and Iwaniec; 1.5 Notation; 2 The Simplest Van Der Corput Estimates; 2.1 Estimates Using First and Second Derivatives; 2.2 Some Simple Inequalities; 2.3 The Weyl-van der Corput Inequality; 2.4 Iterating Weyl-Van der Corput; 2.5 Upper Bounds for the Riemann Zeta-function; 2.6 Notes; 3 The Method of Exponent Pairs; 3.1 Introduction; 3.2 Lemmas on Exponential Integrals; 3.3 Heuristic Arguments and Definitions; 3.4 Proof of the A-Process 7.2 Preliminaries7.3 The Airy-Hardy Integral; 7.4 Gauss Sums; 7.5 Lemmas on Rational Points; 7.6 Semicubical Powers of Integers; 7.7 Proof of the Theorem; 7.8 Notes; Appendix; Bibliography; Index Exponential sums. http://id.loc.gov/authorities/subjects/sh87005567 Sommes exponentielles. MATHEMATICS Number Theory. bisacsh Exponential sums fast Exponentialsumme gnd http://d-nb.info/gnd/4201355-0 Schranke Mathematik gnd http://d-nb.info/gnd/4199965-4 Schätztheorie gnd http://d-nb.info/gnd/4121608-8 Exponentiële sommen. gtt Sommes exponentielles. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh87005567 http://d-nb.info/gnd/4201355-0 http://d-nb.info/gnd/4199965-4 http://d-nb.info/gnd/4121608-8 |
title | Van der Corputʼs method of exponential sums / |
title_auth | Van der Corputʼs method of exponential sums / |
title_exact_search | Van der Corputʼs method of exponential sums / |
title_full | Van der Corputʼs method of exponential sums / S.W. Graham and G. Kolesnik. |
title_fullStr | Van der Corputʼs method of exponential sums / S.W. Graham and G. Kolesnik. |
title_full_unstemmed | Van der Corputʼs method of exponential sums / S.W. Graham and G. Kolesnik. |
title_short | Van der Corputʼs method of exponential sums / |
title_sort | van der corputʼs method of exponential sums |
topic | Exponential sums. http://id.loc.gov/authorities/subjects/sh87005567 Sommes exponentielles. MATHEMATICS Number Theory. bisacsh Exponential sums fast Exponentialsumme gnd http://d-nb.info/gnd/4201355-0 Schranke Mathematik gnd http://d-nb.info/gnd/4199965-4 Schätztheorie gnd http://d-nb.info/gnd/4121608-8 Exponentiële sommen. gtt Sommes exponentielles. ram |
topic_facet | Exponential sums. Sommes exponentielles. MATHEMATICS Number Theory. Exponential sums Exponentialsumme Schranke Mathematik Schätztheorie Exponentiële sommen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552437 |
work_keys_str_mv | AT grahamsw vandercorputʼsmethodofexponentialsums AT kolesnikg vandercorputʼsmethodofexponentialsums |