Algebraic topology :: a student's guide /
This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] :
University Press,
1972.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
4. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles. |
Beschreibung: | 1 online resource (vi, 300 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107360778 1107360773 9780511662584 0511662580 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839303262 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1972 enk ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 726827085 | ||
020 | |a 9781107360778 |q (electronic bk.) | ||
020 | |a 1107360773 |q (electronic bk.) | ||
020 | |a 9780511662584 |q (e-book) | ||
020 | |a 0511662580 |q (e-book) | ||
020 | |z 0521080762 | ||
020 | |z 9780521080767 | ||
035 | |a (OCoLC)839303262 |z (OCoLC)726827085 | ||
050 | 4 | |a QA612 |b .A3 1972eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.2 |2 22 | |
084 | |a 31.61 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 300 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Adams, J. Frank |q (John Frank) |1 https://id.oclc.org/worldcat/entity/E39PBJjxpYGrMGxgQFpqcGtYfq |0 http://id.loc.gov/authorities/names/n78069212 | |
245 | 1 | 0 | |a Algebraic topology : |b a student's guide / |c J.F. Adams. |
260 | |a Cambridge [England] : |b University Press, |c 1972. | ||
300 | |a 1 online resource (vi, 300 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society. Lecture note series ; |v 4 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY | |
505 | 8 | |a 1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5 | |
505 | 8 | |a 5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13 | |
505 | 8 | |a 2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24 | |
650 | 0 | |a Algebraic topology. |0 http://id.loc.gov/authorities/subjects/sh85003438 | |
650 | 6 | |a Topologie algébrique. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Algebraic topology |2 fast | |
650 | 7 | |a Algebraische Topologie |2 gnd |0 http://d-nb.info/gnd/4120861-4 | |
650 | 1 | 7 | |a Algebraïsche topologie. |2 gtt |
650 | 7 | |a Topologie algébrique. |2 ram | |
758 | |i has work: |a Algebraic topology (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJMWchVvxhQVpbFt9jhDy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Adams, J. Frank (John Frank). |t Algebraic topology. |d Cambridge [Eng.] University Press, 1972 |z 0521080762 |w (DLC) 75163178 |w (OCoLC)277728 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 4. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552656 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10461249 | ||
938 | |a EBSCOhost |b EBSC |n 552656 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154449 | ||
938 | |a YBP Library Services |b YANK |n 10407333 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839303262 |
---|---|
_version_ | 1816882228947320832 |
adam_text | |
any_adam_object | |
author | Adams, J. Frank (John Frank) |
author_GND | http://id.loc.gov/authorities/names/n78069212 |
author_facet | Adams, J. Frank (John Frank) |
author_role | |
author_sort | Adams, J. Frank |
author_variant | j f a jf jfa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612 .A3 1972eb |
callnumber-search | QA612 .A3 1972eb |
callnumber-sort | QA 3612 A3 41972EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 300 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY 1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5 5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13 2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24 |
ctrlnum | (OCoLC)839303262 |
dewey-full | 514/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2 |
dewey-search | 514/.2 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05738cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839303262</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1972 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">726827085</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360778</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360773</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662584</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662580</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521080762</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521080767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839303262</subfield><subfield code="z">(OCoLC)726827085</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612</subfield><subfield code="b">.A3 1972eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adams, J. Frank</subfield><subfield code="q">(John Frank)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjxpYGrMGxgQFpqcGtYfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78069212</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic topology :</subfield><subfield code="b">a student's guide /</subfield><subfield code="c">J.F. Adams.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] :</subfield><subfield code="b">University Press,</subfield><subfield code="c">1972.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 300 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society. Lecture note series ;</subfield><subfield code="v">4</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003438</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4120861-4</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Algebraïsche topologie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie algébrique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Algebraic topology (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJMWchVvxhQVpbFt9jhDy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Adams, J. Frank (John Frank).</subfield><subfield code="t">Algebraic topology.</subfield><subfield code="d">Cambridge [Eng.] University Press, 1972</subfield><subfield code="z">0521080762</subfield><subfield code="w">(DLC) 75163178</subfield><subfield code="w">(OCoLC)277728</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">4.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552656</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10461249</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552656</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154449</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407333</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839303262 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107360778 1107360773 9780511662584 0511662580 |
language | English |
oclc_num | 839303262 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 300 pages) |
psigel | ZDB-4-EBA |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society. Lecture note series ; |
spelling | Adams, J. Frank (John Frank) https://id.oclc.org/worldcat/entity/E39PBJjxpYGrMGxgQFpqcGtYfq http://id.loc.gov/authorities/names/n78069212 Algebraic topology : a student's guide / J.F. Adams. Cambridge [England] : University Press, 1972. 1 online resource (vi, 300 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society. Lecture note series ; 4 Includes bibliographical references. Print version record. This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles. Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY 1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5 5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13 2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Topology. bisacsh Algebraic topology fast Algebraische Topologie gnd http://d-nb.info/gnd/4120861-4 Algebraïsche topologie. gtt Topologie algébrique. ram has work: Algebraic topology (Text) https://id.oclc.org/worldcat/entity/E39PCGJMWchVvxhQVpbFt9jhDy https://id.oclc.org/worldcat/ontology/hasWork Print version: Adams, J. Frank (John Frank). Algebraic topology. Cambridge [Eng.] University Press, 1972 0521080762 (DLC) 75163178 (OCoLC)277728 London Mathematical Society lecture note series ; 4. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552656 Volltext |
spellingShingle | Adams, J. Frank (John Frank) Algebraic topology : a student's guide / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY 1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5 5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13 2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Topology. bisacsh Algebraic topology fast Algebraische Topologie gnd http://d-nb.info/gnd/4120861-4 Algebraïsche topologie. gtt Topologie algébrique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003438 http://d-nb.info/gnd/4120861-4 |
title | Algebraic topology : a student's guide / |
title_auth | Algebraic topology : a student's guide / |
title_exact_search | Algebraic topology : a student's guide / |
title_full | Algebraic topology : a student's guide / J.F. Adams. |
title_fullStr | Algebraic topology : a student's guide / J.F. Adams. |
title_full_unstemmed | Algebraic topology : a student's guide / J.F. Adams. |
title_short | Algebraic topology : |
title_sort | algebraic topology a student s guide |
title_sub | a student's guide / |
topic | Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Topology. bisacsh Algebraic topology fast Algebraische Topologie gnd http://d-nb.info/gnd/4120861-4 Algebraïsche topologie. gtt Topologie algébrique. ram |
topic_facet | Algebraic topology. Topologie algébrique. MATHEMATICS Topology. Algebraic topology Algebraische Topologie Algebraïsche topologie. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552656 |
work_keys_str_mv | AT adamsjfrank algebraictopologyastudentsguide |