Representations of solvable groups /:
Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtai...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©1993.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
185. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer. |
Beschreibung: | 1 online resource (xi, 302 pages) |
Bibliographie: | Includes bibliographical references (pages 293-298) and index. |
ISBN: | 9781107361652 1107361656 9780511525971 0511525974 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839303252 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1993 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 708565604 | ||
020 | |a 9781107361652 |q (electronic bk.) | ||
020 | |a 1107361656 |q (electronic bk.) | ||
020 | |a 9780511525971 |q (e-book) | ||
020 | |a 0511525974 |q (e-book) | ||
020 | |z 0521397391 | ||
020 | |z 9780521397391 | ||
035 | |a (OCoLC)839303252 |z (OCoLC)708565604 | ||
050 | 4 | |a QA177 |b .M36 1993eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 31.21 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Manz, Olaf. | |
245 | 1 | 0 | |a Representations of solvable groups / |c Olaf Manz and Thomas R. Wolf. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©1993. | ||
300 | |a 1 online resource (xi, 302 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 185 | |
504 | |a Includes bibliographical references (pages 293-298) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer. | ||
505 | 0 | |a Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; Chap. 0 Preliminaries; Chap. I Solvable subgroups of linear groups; 1 Quasi-primitive linear groups; 2 Semi-linear and small linear groups; 3 Bounds for the order and the derived length of linear groups; Chap. II Solvable permutation groups; 4 Orbit sizes of p-groups and the existence of regular orbits; 5 Solvable permutation groups and the existence of regular orbits on the power set; 6 Solvable doubly transitive permutation groups; 7 Regular orbits of Sylow subgroups of solvable linear groups | |
650 | 0 | |a Solvable groups. |0 http://id.loc.gov/authorities/subjects/sh85124740 | |
650 | 0 | |a Representations of groups. |0 http://id.loc.gov/authorities/subjects/sh85112944 | |
650 | 0 | |a Permutation groups. |0 http://id.loc.gov/authorities/subjects/sh85099993 | |
650 | 6 | |a Groupes résolubles. | |
650 | 6 | |a Représentations de groupes. | |
650 | 6 | |a Groupes de permutations. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Permutation groups |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
650 | 7 | |a Solvable groups |2 fast | |
650 | 7 | |a Auflösbare Gruppe |2 gnd |0 http://d-nb.info/gnd/4245706-3 | |
650 | 7 | |a Darstellung |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4128289-9 | |
650 | 7 | |a Endliche auflösbare Gruppe |2 gnd |0 http://d-nb.info/gnd/4291485-1 | |
650 | 7 | |a Darstellungstheorie |2 gnd |0 http://d-nb.info/gnd/4148816-7 | |
650 | 1 | 7 | |a Groepen (wiskunde) |2 gtt |
650 | 7 | |a Représentations de groupes. |2 ram | |
650 | 7 | |a Groupes de permutation. |2 ram | |
700 | 1 | |a Wolf, Thomas R. | |
776 | 0 | 8 | |i Print version: |a Manz, Olaf. |t Representations of solvable groups. |d Cambridge ; New York : Cambridge University Press, ©1993 |z 0521397391 |w (DLC) 94112292 |w (OCoLC)28981606 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 185. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552410 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10444104 | ||
938 | |a EBSCOhost |b EBSC |n 552410 | ||
938 | |a YBP Library Services |b YANK |n 10407416 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839303252 |
---|---|
_version_ | 1816882229002895360 |
adam_text | |
any_adam_object | |
author | Manz, Olaf |
author2 | Wolf, Thomas R. |
author2_role | |
author2_variant | t r w tr trw |
author_facet | Manz, Olaf Wolf, Thomas R. |
author_role | |
author_sort | Manz, Olaf |
author_variant | o m om |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .M36 1993eb |
callnumber-search | QA177 .M36 1993eb |
callnumber-sort | QA 3177 M36 41993EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; Chap. 0 Preliminaries; Chap. I Solvable subgroups of linear groups; 1 Quasi-primitive linear groups; 2 Semi-linear and small linear groups; 3 Bounds for the order and the derived length of linear groups; Chap. II Solvable permutation groups; 4 Orbit sizes of p-groups and the existence of regular orbits; 5 Solvable permutation groups and the existence of regular orbits on the power set; 6 Solvable doubly transitive permutation groups; 7 Regular orbits of Sylow subgroups of solvable linear groups |
ctrlnum | (OCoLC)839303252 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04494cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839303252</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1993 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361652</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511525971</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511525974</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521397391</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521397391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839303252</subfield><subfield code="z">(OCoLC)708565604</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.M36 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manz, Olaf.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of solvable groups /</subfield><subfield code="c">Olaf Manz and Thomas R. Wolf.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 302 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">185</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 293-298) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; Chap. 0 Preliminaries; Chap. I Solvable subgroups of linear groups; 1 Quasi-primitive linear groups; 2 Semi-linear and small linear groups; 3 Bounds for the order and the derived length of linear groups; Chap. II Solvable permutation groups; 4 Orbit sizes of p-groups and the existence of regular orbits; 5 Solvable permutation groups and the existence of regular orbits on the power set; 6 Solvable doubly transitive permutation groups; 7 Regular orbits of Sylow subgroups of solvable linear groups</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solvable groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124740</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112944</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Permutation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099993</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes résolubles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de permutations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solvable groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Auflösbare Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4245706-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128289-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endliche auflösbare Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4291485-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4148816-7</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Groepen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes de permutation.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Thomas R.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Manz, Olaf.</subfield><subfield code="t">Representations of solvable groups.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©1993</subfield><subfield code="z">0521397391</subfield><subfield code="w">(DLC) 94112292</subfield><subfield code="w">(OCoLC)28981606</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">185.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552410</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10444104</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552410</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407416</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839303252 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361652 1107361656 9780511525971 0511525974 |
language | English |
oclc_num | 839303252 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 302 pages) |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Manz, Olaf. Representations of solvable groups / Olaf Manz and Thomas R. Wolf. Cambridge ; New York : Cambridge University Press, ©1993. 1 online resource (xi, 302 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 185 Includes bibliographical references (pages 293-298) and index. Print version record. Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer. Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; Chap. 0 Preliminaries; Chap. I Solvable subgroups of linear groups; 1 Quasi-primitive linear groups; 2 Semi-linear and small linear groups; 3 Bounds for the order and the derived length of linear groups; Chap. II Solvable permutation groups; 4 Orbit sizes of p-groups and the existence of regular orbits; 5 Solvable permutation groups and the existence of regular orbits on the power set; 6 Solvable doubly transitive permutation groups; 7 Regular orbits of Sylow subgroups of solvable linear groups Solvable groups. http://id.loc.gov/authorities/subjects/sh85124740 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes résolubles. Représentations de groupes. Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Representations of groups fast Solvable groups fast Auflösbare Gruppe gnd http://d-nb.info/gnd/4245706-3 Darstellung Mathematik gnd http://d-nb.info/gnd/4128289-9 Endliche auflösbare Gruppe gnd http://d-nb.info/gnd/4291485-1 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Groepen (wiskunde) gtt Représentations de groupes. ram Groupes de permutation. ram Wolf, Thomas R. Print version: Manz, Olaf. Representations of solvable groups. Cambridge ; New York : Cambridge University Press, ©1993 0521397391 (DLC) 94112292 (OCoLC)28981606 London Mathematical Society lecture note series ; 185. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552410 Volltext |
spellingShingle | Manz, Olaf Representations of solvable groups / London Mathematical Society lecture note series ; Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; Chap. 0 Preliminaries; Chap. I Solvable subgroups of linear groups; 1 Quasi-primitive linear groups; 2 Semi-linear and small linear groups; 3 Bounds for the order and the derived length of linear groups; Chap. II Solvable permutation groups; 4 Orbit sizes of p-groups and the existence of regular orbits; 5 Solvable permutation groups and the existence of regular orbits on the power set; 6 Solvable doubly transitive permutation groups; 7 Regular orbits of Sylow subgroups of solvable linear groups Solvable groups. http://id.loc.gov/authorities/subjects/sh85124740 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes résolubles. Représentations de groupes. Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Representations of groups fast Solvable groups fast Auflösbare Gruppe gnd http://d-nb.info/gnd/4245706-3 Darstellung Mathematik gnd http://d-nb.info/gnd/4128289-9 Endliche auflösbare Gruppe gnd http://d-nb.info/gnd/4291485-1 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Groepen (wiskunde) gtt Représentations de groupes. ram Groupes de permutation. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85124740 http://id.loc.gov/authorities/subjects/sh85112944 http://id.loc.gov/authorities/subjects/sh85099993 http://d-nb.info/gnd/4245706-3 http://d-nb.info/gnd/4128289-9 http://d-nb.info/gnd/4291485-1 http://d-nb.info/gnd/4148816-7 |
title | Representations of solvable groups / |
title_auth | Representations of solvable groups / |
title_exact_search | Representations of solvable groups / |
title_full | Representations of solvable groups / Olaf Manz and Thomas R. Wolf. |
title_fullStr | Representations of solvable groups / Olaf Manz and Thomas R. Wolf. |
title_full_unstemmed | Representations of solvable groups / Olaf Manz and Thomas R. Wolf. |
title_short | Representations of solvable groups / |
title_sort | representations of solvable groups |
topic | Solvable groups. http://id.loc.gov/authorities/subjects/sh85124740 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes résolubles. Représentations de groupes. Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Representations of groups fast Solvable groups fast Auflösbare Gruppe gnd http://d-nb.info/gnd/4245706-3 Darstellung Mathematik gnd http://d-nb.info/gnd/4128289-9 Endliche auflösbare Gruppe gnd http://d-nb.info/gnd/4291485-1 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Groepen (wiskunde) gtt Représentations de groupes. ram Groupes de permutation. ram |
topic_facet | Solvable groups. Representations of groups. Permutation groups. Groupes résolubles. Représentations de groupes. Groupes de permutations. MATHEMATICS Group Theory. Permutation groups Representations of groups Solvable groups Auflösbare Gruppe Darstellung Mathematik Endliche auflösbare Gruppe Darstellungstheorie Groepen (wiskunde) Groupes de permutation. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552410 |
work_keys_str_mv | AT manzolaf representationsofsolvablegroups AT wolfthomasr representationsofsolvablegroups |