P-adic analysis :: a short course on recent work /
This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1980.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
46. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. |
Beschreibung: | 1 online resource (163 pages) |
Bibliographie: | Includes bibliographical references (pages 154-160) and index. |
ISBN: | 9781107361072 1107361079 9780511526107 0511526105 |
ISSN: | 0076-0552 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839302770 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1980 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCL |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708567288 | ||
020 | |a 9781107361072 |q (electronic bk.) | ||
020 | |a 1107361079 |q (electronic bk.) | ||
020 | |a 9780511526107 |q (e-book) | ||
020 | |a 0511526105 |q (e-book) | ||
020 | |z 0521280605 | ||
020 | |z 9780521280600 | ||
035 | |a (OCoLC)839302770 |z (OCoLC)708567288 | ||
050 | 4 | |a QA241 |b .K673 1980eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512/.74 |2 22 | |
084 | |a 31.24 |2 bcl | ||
084 | |a 31.40 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Koblitz, Neal, |d 1948- |1 https://id.oclc.org/worldcat/entity/E39PBJvt66BCcPCt3PjPgqr8YP |0 http://id.loc.gov/authorities/names/n77004276 | |
245 | 1 | 0 | |a P-adic analysis : |b a short course on recent work / |c Neal Koblitz. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1980. | ||
300 | |a 1 online resource (163 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 46, |x 0076-0552 | |
504 | |a Includes bibliographical references (pages 154-160) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. | ||
505 | 0 | |a Cover; Half-title; Title; Copyright; Contents; Preface; CHAPTER I. BASICS; 1. History (very brief); 2. Basic concepts; 3. Power series; 4. Newton polygons; CHAPTER II. p-ADIC C-FUNCTIONS, L-FUNCTIONS AND r-FUNCTIONS; 1. Dirichlet L-series; 2. p-adic measures; 3. p-adic interpolation; 4. p-adic Dirichlet L-functions; 5. Leopoldt's formula for L (1,X); 6. The p-adic gamma function; 7. The p-adic log gamma function; 8. A formula for L'p(0,X); CHAPTER III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION; 1. Gauss and Jacobi sums; 2. Fermat curves; 3. L-series for algebraic varieties; 4. Cohomology | |
505 | 8 | |a 5. p-adic cohomology6. p-adic formula for Gauss sums; 7. Stickleberger1s theorem; CHAPTER IV. p-ADIC REGULATORS; 1. Regulators and L-functions; 2. Leopoldt's p-adic regulator; 3. Gross's p-adic regulator; 4. Gross's conjecture in the abelian over Q case; APPENDIX; 1. A theorem of Amice-Fresnel; 2. The classical Stieltjes transform; 3. The Shnirelman integral and the p-adic Stieltjes transfonsfor; 4. p-adic spectral theorem; Bibliography; Index | |
650 | 0 | |a p-adic analysis. |0 http://id.loc.gov/authorities/subjects/sh85096399 | |
650 | 0 | |a p-adic numbers. |0 http://id.loc.gov/authorities/subjects/sh85096402 | |
650 | 6 | |a Nombres p-adiques. | |
650 | 6 | |a Analyse p-adique. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a p-adic numbers |2 fast | |
650 | 7 | |a p-adic analysis |2 fast | |
650 | 7 | |a p-adische Zahl |2 gnd |0 http://d-nb.info/gnd/4044292-5 | |
650 | 7 | |a Analyse p-adique. |2 ram | |
776 | 0 | 8 | |i Print version: |a Koblitz, Neal, 1948- |t P-adic analysis. |d Cambridge [Eng.] ; New York : Cambridge University Press, 1980 |z 0521280605 |w (DLC) 80040806 |w (OCoLC)6602842 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 46. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552448 |3 Volltext |
938 | |a Internet Archive |b INAR |n padicanalysissho0000kobl | ||
938 | |a ebrary |b EBRY |n ebr10446025 | ||
938 | |a EBSCOhost |b EBSC |n 552448 | ||
938 | |a YBP Library Services |b YANK |n 10407362 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839302770 |
---|---|
_version_ | 1816882228937883648 |
adam_text | |
any_adam_object | |
author | Koblitz, Neal, 1948- |
author_GND | http://id.loc.gov/authorities/names/n77004276 |
author_facet | Koblitz, Neal, 1948- |
author_role | |
author_sort | Koblitz, Neal, 1948- |
author_variant | n k nk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 .K673 1980eb |
callnumber-search | QA241 .K673 1980eb |
callnumber-sort | QA 3241 K673 41980EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Title; Copyright; Contents; Preface; CHAPTER I. BASICS; 1. History (very brief); 2. Basic concepts; 3. Power series; 4. Newton polygons; CHAPTER II. p-ADIC C-FUNCTIONS, L-FUNCTIONS AND r-FUNCTIONS; 1. Dirichlet L-series; 2. p-adic measures; 3. p-adic interpolation; 4. p-adic Dirichlet L-functions; 5. Leopoldt's formula for L (1,X); 6. The p-adic gamma function; 7. The p-adic log gamma function; 8. A formula for L'p(0,X); CHAPTER III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION; 1. Gauss and Jacobi sums; 2. Fermat curves; 3. L-series for algebraic varieties; 4. Cohomology 5. p-adic cohomology6. p-adic formula for Gauss sums; 7. Stickleberger1s theorem; CHAPTER IV. p-ADIC REGULATORS; 1. Regulators and L-functions; 2. Leopoldt's p-adic regulator; 3. Gross's p-adic regulator; 4. Gross's conjecture in the abelian over Q case; APPENDIX; 1. A theorem of Amice-Fresnel; 2. The classical Stieltjes transform; 3. The Shnirelman integral and the p-adic Stieltjes transfonsfor; 4. p-adic spectral theorem; Bibliography; Index |
ctrlnum | (OCoLC)839302770 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04624cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839302770</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1980 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708567288</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361072</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361079</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526107</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526105</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521280605</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521280600</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839302770</subfield><subfield code="z">(OCoLC)708567288</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield><subfield code="b">.K673 1980eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.24</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koblitz, Neal,</subfield><subfield code="d">1948-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvt66BCcPCt3PjPgqr8YP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n77004276</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P-adic analysis :</subfield><subfield code="b">a short course on recent work /</subfield><subfield code="c">Neal Koblitz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1980.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (163 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">46,</subfield><subfield code="x">0076-0552</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 154-160) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Title; Copyright; Contents; Preface; CHAPTER I. BASICS; 1. History (very brief); 2. Basic concepts; 3. Power series; 4. Newton polygons; CHAPTER II. p-ADIC C-FUNCTIONS, L-FUNCTIONS AND r-FUNCTIONS; 1. Dirichlet L-series; 2. p-adic measures; 3. p-adic interpolation; 4. p-adic Dirichlet L-functions; 5. Leopoldt's formula for L (1,X); 6. The p-adic gamma function; 7. The p-adic log gamma function; 8. A formula for L'p(0,X); CHAPTER III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION; 1. Gauss and Jacobi sums; 2. Fermat curves; 3. L-series for algebraic varieties; 4. Cohomology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. p-adic cohomology6. p-adic formula for Gauss sums; 7. Stickleberger1s theorem; CHAPTER IV. p-ADIC REGULATORS; 1. Regulators and L-functions; 2. Leopoldt's p-adic regulator; 3. Gross's p-adic regulator; 4. Gross's conjecture in the abelian over Q case; APPENDIX; 1. A theorem of Amice-Fresnel; 2. The classical Stieltjes transform; 3. The Shnirelman integral and the p-adic Stieltjes transfonsfor; 4. p-adic spectral theorem; Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">p-adic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85096399</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">p-adic numbers.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85096402</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres p-adiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse p-adique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-adic numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-adic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-adische Zahl</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4044292-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse p-adique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Koblitz, Neal, 1948-</subfield><subfield code="t">P-adic analysis.</subfield><subfield code="d">Cambridge [Eng.] ; New York : Cambridge University Press, 1980</subfield><subfield code="z">0521280605</subfield><subfield code="w">(DLC) 80040806</subfield><subfield code="w">(OCoLC)6602842</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">46.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552448</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">padicanalysissho0000kobl</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10446025</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552448</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407362</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839302770 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361072 1107361079 9780511526107 0511526105 |
issn | 0076-0552 |
language | English |
oclc_num | 839302770 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (163 pages) |
psigel | ZDB-4-EBA |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Koblitz, Neal, 1948- https://id.oclc.org/worldcat/entity/E39PBJvt66BCcPCt3PjPgqr8YP http://id.loc.gov/authorities/names/n77004276 P-adic analysis : a short course on recent work / Neal Koblitz. Cambridge [England] ; New York : Cambridge University Press, 1980. 1 online resource (163 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 46, 0076-0552 Includes bibliographical references (pages 154-160) and index. Print version record. This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. Cover; Half-title; Title; Copyright; Contents; Preface; CHAPTER I. BASICS; 1. History (very brief); 2. Basic concepts; 3. Power series; 4. Newton polygons; CHAPTER II. p-ADIC C-FUNCTIONS, L-FUNCTIONS AND r-FUNCTIONS; 1. Dirichlet L-series; 2. p-adic measures; 3. p-adic interpolation; 4. p-adic Dirichlet L-functions; 5. Leopoldt's formula for L (1,X); 6. The p-adic gamma function; 7. The p-adic log gamma function; 8. A formula for L'p(0,X); CHAPTER III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION; 1. Gauss and Jacobi sums; 2. Fermat curves; 3. L-series for algebraic varieties; 4. Cohomology 5. p-adic cohomology6. p-adic formula for Gauss sums; 7. Stickleberger1s theorem; CHAPTER IV. p-ADIC REGULATORS; 1. Regulators and L-functions; 2. Leopoldt's p-adic regulator; 3. Gross's p-adic regulator; 4. Gross's conjecture in the abelian over Q case; APPENDIX; 1. A theorem of Amice-Fresnel; 2. The classical Stieltjes transform; 3. The Shnirelman integral and the p-adic Stieltjes transfonsfor; 4. p-adic spectral theorem; Bibliography; Index p-adic analysis. http://id.loc.gov/authorities/subjects/sh85096399 p-adic numbers. http://id.loc.gov/authorities/subjects/sh85096402 Nombres p-adiques. Analyse p-adique. MATHEMATICS Number Theory. bisacsh p-adic numbers fast p-adic analysis fast p-adische Zahl gnd http://d-nb.info/gnd/4044292-5 Analyse p-adique. ram Print version: Koblitz, Neal, 1948- P-adic analysis. Cambridge [Eng.] ; New York : Cambridge University Press, 1980 0521280605 (DLC) 80040806 (OCoLC)6602842 London Mathematical Society lecture note series ; 46. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552448 Volltext |
spellingShingle | Koblitz, Neal, 1948- P-adic analysis : a short course on recent work / London Mathematical Society lecture note series ; Cover; Half-title; Title; Copyright; Contents; Preface; CHAPTER I. BASICS; 1. History (very brief); 2. Basic concepts; 3. Power series; 4. Newton polygons; CHAPTER II. p-ADIC C-FUNCTIONS, L-FUNCTIONS AND r-FUNCTIONS; 1. Dirichlet L-series; 2. p-adic measures; 3. p-adic interpolation; 4. p-adic Dirichlet L-functions; 5. Leopoldt's formula for L (1,X); 6. The p-adic gamma function; 7. The p-adic log gamma function; 8. A formula for L'p(0,X); CHAPTER III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION; 1. Gauss and Jacobi sums; 2. Fermat curves; 3. L-series for algebraic varieties; 4. Cohomology 5. p-adic cohomology6. p-adic formula for Gauss sums; 7. Stickleberger1s theorem; CHAPTER IV. p-ADIC REGULATORS; 1. Regulators and L-functions; 2. Leopoldt's p-adic regulator; 3. Gross's p-adic regulator; 4. Gross's conjecture in the abelian over Q case; APPENDIX; 1. A theorem of Amice-Fresnel; 2. The classical Stieltjes transform; 3. The Shnirelman integral and the p-adic Stieltjes transfonsfor; 4. p-adic spectral theorem; Bibliography; Index p-adic analysis. http://id.loc.gov/authorities/subjects/sh85096399 p-adic numbers. http://id.loc.gov/authorities/subjects/sh85096402 Nombres p-adiques. Analyse p-adique. MATHEMATICS Number Theory. bisacsh p-adic numbers fast p-adic analysis fast p-adische Zahl gnd http://d-nb.info/gnd/4044292-5 Analyse p-adique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85096399 http://id.loc.gov/authorities/subjects/sh85096402 http://d-nb.info/gnd/4044292-5 |
title | P-adic analysis : a short course on recent work / |
title_auth | P-adic analysis : a short course on recent work / |
title_exact_search | P-adic analysis : a short course on recent work / |
title_full | P-adic analysis : a short course on recent work / Neal Koblitz. |
title_fullStr | P-adic analysis : a short course on recent work / Neal Koblitz. |
title_full_unstemmed | P-adic analysis : a short course on recent work / Neal Koblitz. |
title_short | P-adic analysis : |
title_sort | p adic analysis a short course on recent work |
title_sub | a short course on recent work / |
topic | p-adic analysis. http://id.loc.gov/authorities/subjects/sh85096399 p-adic numbers. http://id.loc.gov/authorities/subjects/sh85096402 Nombres p-adiques. Analyse p-adique. MATHEMATICS Number Theory. bisacsh p-adic numbers fast p-adic analysis fast p-adische Zahl gnd http://d-nb.info/gnd/4044292-5 Analyse p-adique. ram |
topic_facet | p-adic analysis. p-adic numbers. Nombres p-adiques. Analyse p-adique. MATHEMATICS Number Theory. p-adic numbers p-adic analysis p-adische Zahl |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552448 |
work_keys_str_mv | AT koblitzneal padicanalysisashortcourseonrecentwork |