Geometric Galois Actions.: Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. /
This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
1997.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
no. 243. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology. |
Beschreibung: | Title from PDF title page (viewed on Apr 9, 2013). Title from publishers bibliographic system (viewed on 22 Dec 2011). |
Beschreibung: | 1 online resource (360 pages) |
ISBN: | 9781107362581 110736258X 9780511666124 0511666128 9780521596411 0521596416 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn837375893 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130409s1997 enk o 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d AUD |d OCLCO |d TEF |d OCLCO |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d VTS |d OTZ |d AU@ |d REC |d STF |d M8D |d OCLCQ |d LUN |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SFB |d OCLCQ | ||
019 | |a 776972557 |a 1167087130 | ||
020 | |a 9781107362581 |q (electronic bk.) | ||
020 | |a 110736258X |q (electronic bk.) | ||
020 | |a 9780511666124 |q (ebook) | ||
020 | |a 0511666128 |q (ebook) | ||
020 | |a 9780521596411 |q (paperback) | ||
020 | |a 0521596416 |q (paperback) | ||
035 | |a (OCoLC)837375893 |z (OCoLC)776972557 |z (OCoLC)1167087130 | ||
050 | 4 | |a QA564 | |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
082 | 7 | |a 516.3/5 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Geometric Galois Actions. |n Volume 2. |p The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. / |c edited by Leila Schneps, Pierre Lochak. |
246 | 3 | 0 | |a Inverse Galois Problem, Moduli Spaces and Mapping Class group |
260 | |a Cambridge : |b Cambridge University Press, |c 1997. | ||
300 | |a 1 online resource (360 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series ; |v no. 243 | |
500 | |a Title from PDF title page (viewed on Apr 9, 2013). | ||
500 | |a Title from publishers bibliographic system (viewed on 22 Dec 2011). | ||
520 | |a This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology. | ||
505 | 0 | |a Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups. | |
505 | 8 | |a 0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique. | |
505 | 8 | |a 2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G. | |
505 | 8 | |a 5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3. | |
505 | 8 | |a 2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation. | |
650 | 0 | |a Geometry, Algebraic. |0 http://id.loc.gov/authorities/subjects/sh85054140 | |
650 | 0 | |a Moduli theory. |0 http://id.loc.gov/authorities/subjects/sh85086471 | |
650 | 6 | |a Géométrie algébrique. | |
650 | 6 | |a Théorie des modules. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a Geometry, Algebraic |2 fast | |
650 | 7 | |a Moduli theory |2 fast | |
700 | 1 | |a Schneps, Leila. | |
700 | 1 | |a Lochak, P. |q (Pierre) |1 https://id.oclc.org/worldcat/entity/E39PCjGgCjjtxX99K7vHwYbCBd |0 http://id.loc.gov/authorities/names/n88120162 | |
758 | |i has work: |a The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups Volume 2 Geometric Galois Actions (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH8Tx9WdpWFGJcPfTwbq73 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9780521596411 |
830 | 0 | |a London Mathematical Society lecture note series ; |v no. 243. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552418 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 552418 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn837375893 |
---|---|
_version_ | 1816882228596047874 |
adam_text | |
any_adam_object | |
author2 | Schneps, Leila Lochak, P. (Pierre) |
author2_role | |
author2_variant | l s ls p l pl |
author_GND | http://id.loc.gov/authorities/names/n88120162 |
author_facet | Schneps, Leila Lochak, P. (Pierre) |
author_sort | Schneps, Leila |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 |
callnumber-search | QA564 |
callnumber-sort | QA 3564 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups. 0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique. 2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G. 5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3. 2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation. |
ctrlnum | (OCoLC)837375893 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05934cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn837375893</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130409s1997 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TEF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OTZ</subfield><subfield code="d">AU@</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">776972557</subfield><subfield code="a">1167087130</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362581</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110736258X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511666124</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511666128</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521596411</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521596416</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)837375893</subfield><subfield code="z">(OCoLC)776972557</subfield><subfield code="z">(OCoLC)1167087130</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA564</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Geometric Galois Actions.</subfield><subfield code="n">Volume 2.</subfield><subfield code="p">The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. /</subfield><subfield code="c">edited by Leila Schneps, Pierre Lochak.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Inverse Galois Problem, Moduli Spaces and Mapping Class group</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (360 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series ;</subfield><subfield code="v">no. 243</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on Apr 9, 2013).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 22 Dec 2011).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Algebraic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054140</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Moduli theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086471</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des modules.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Algebraic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moduli theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneps, Leila.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lochak, P.</subfield><subfield code="q">(Pierre)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGgCjjtxX99K7vHwYbCBd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88120162</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups Volume 2 Geometric Galois Actions (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH8Tx9WdpWFGJcPfTwbq73</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9780521596411</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">no. 243.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552418</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552418</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn837375893 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107362581 110736258X 9780511666124 0511666128 9780521596411 0521596416 |
language | English |
oclc_num | 837375893 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (360 pages) |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society Lecture Note Series ; |
spelling | Geometric Galois Actions. Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. / edited by Leila Schneps, Pierre Lochak. Inverse Galois Problem, Moduli Spaces and Mapping Class group Cambridge : Cambridge University Press, 1997. 1 online resource (360 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series ; no. 243 Title from PDF title page (viewed on Apr 9, 2013). Title from publishers bibliographic system (viewed on 22 Dec 2011). This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology. Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups. 0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique. 2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G. 5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3. 2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation. Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Géométrie algébrique. Théorie des modules. MATHEMATICS Geometry Algebraic. bisacsh Geometry, Algebraic fast Moduli theory fast Schneps, Leila. Lochak, P. (Pierre) https://id.oclc.org/worldcat/entity/E39PCjGgCjjtxX99K7vHwYbCBd http://id.loc.gov/authorities/names/n88120162 has work: The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups Volume 2 Geometric Galois Actions (Text) https://id.oclc.org/worldcat/entity/E39PCH8Tx9WdpWFGJcPfTwbq73 https://id.oclc.org/worldcat/ontology/hasWork Print version: 9780521596411 London Mathematical Society lecture note series ; no. 243. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552418 Volltext |
spellingShingle | Geometric Galois Actions. London Mathematical Society lecture note series ; Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups. 0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique. 2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G. 5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3. 2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation. Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Géométrie algébrique. Théorie des modules. MATHEMATICS Geometry Algebraic. bisacsh Geometry, Algebraic fast Moduli theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054140 http://id.loc.gov/authorities/subjects/sh85086471 |
title | Geometric Galois Actions. |
title_alt | Inverse Galois Problem, Moduli Spaces and Mapping Class group |
title_auth | Geometric Galois Actions. |
title_exact_search | Geometric Galois Actions. |
title_full | Geometric Galois Actions. Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. / edited by Leila Schneps, Pierre Lochak. |
title_fullStr | Geometric Galois Actions. Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. / edited by Leila Schneps, Pierre Lochak. |
title_full_unstemmed | Geometric Galois Actions. Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. / edited by Leila Schneps, Pierre Lochak. |
title_short | Geometric Galois Actions. |
title_sort | geometric galois actions the inverse galois problem moduli spaces and mapping class groups |
topic | Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Moduli theory. http://id.loc.gov/authorities/subjects/sh85086471 Géométrie algébrique. Théorie des modules. MATHEMATICS Geometry Algebraic. bisacsh Geometry, Algebraic fast Moduli theory fast |
topic_facet | Geometry, Algebraic. Moduli theory. Géométrie algébrique. Théorie des modules. MATHEMATICS Geometry Algebraic. Geometry, Algebraic Moduli theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552418 |
work_keys_str_mv | AT schnepsleila geometricgaloisactionsvolume2 AT lochakp geometricgaloisactionsvolume2 AT schnepsleila inversegaloisproblemmodulispacesandmappingclassgroup AT lochakp inversegaloisproblemmodulispacesandmappingclassgroup |