Ergodic theory of Zd actions :: proceedings of the Warwick symposium, 1993-4 /
The classical theory of dynamical systems has tended to concentrate on Z-actions or R-actions. However in recent years there has been considerable progress in the study of higher dimensional actions (i.e. Zd or Rd with d>1). This book represents the proceedings of the 1993-4 Warwick Symposium on...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1996.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
228. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The classical theory of dynamical systems has tended to concentrate on Z-actions or R-actions. However in recent years there has been considerable progress in the study of higher dimensional actions (i.e. Zd or Rd with d>1). This book represents the proceedings of the 1993-4 Warwick Symposium on Zd actions. It comprises a mixture of surveys and original articles that span many of the diverse facets of the subject, including important connections with statistical mechanics, number theory and algebra. Researchers in ergodic theory and related fields will find that this book is an invaluable resource. |
Beschreibung: | Title from PDF title page (viewed on Apr. 9, 2013). On t.p. "d" in "Zd" is superscript. |
Beschreibung: | 1 online resource (viii, 484 pages) : illustrations. |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107362475 1107362474 9780511662812 0511662815 1139886711 9781139886710 1107367387 9781107367388 1107371953 9781107371958 1107369568 9781107369566 1299405010 9781299405011 1107364922 9781107364929 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn837286973 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130409s1996 enka ob 100 0 eng d | ||
010 | |z 96001584 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d OCLCO |d OCL |d OCLCO |d OCLCQ |d OCLCO |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d COO |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d HS0 |d OCL |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d OCLCQ |d SFB | ||
019 | |a 732957911 |a 1109289447 |a 1162529492 |a 1241860591 |a 1242485057 | ||
020 | |a 9781107362475 |q (electronic bk.) | ||
020 | |a 1107362474 |q (electronic bk.) | ||
020 | |a 9780511662812 |q (e-book) | ||
020 | |a 0511662815 |q (e-book) | ||
020 | |z 0521576881 |q (pbk.) | ||
020 | |z 9780521576888 | ||
020 | |a 1139886711 | ||
020 | |a 9781139886710 | ||
020 | |a 1107367387 | ||
020 | |a 9781107367388 | ||
020 | |a 1107371953 | ||
020 | |a 9781107371958 | ||
020 | |a 1107369568 | ||
020 | |a 9781107369566 | ||
020 | |a 1299405010 | ||
020 | |a 9781299405011 | ||
020 | |a 1107364922 | ||
020 | |a 9781107364929 | ||
035 | |a (OCoLC)837286973 |z (OCoLC)732957911 |z (OCoLC)1109289447 |z (OCoLC)1162529492 |z (OCoLC)1241860591 |z (OCoLC)1242485057 | ||
050 | 4 | |a QA614.8 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.74 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Ergodic theory of Zd actions : |b proceedings of the Warwick symposium, 1993-4 / |c edited by Mark Pollicott, Klaus Schmidt. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1996. | ||
300 | |a 1 online resource (viii, 484 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 228 | |
500 | |a Title from PDF title page (viewed on Apr. 9, 2013). | ||
500 | |a On t.p. "d" in "Zd" is superscript. | ||
504 | |a Includes bibliographical references. | ||
520 | |a The classical theory of dynamical systems has tended to concentrate on Z-actions or R-actions. However in recent years there has been considerable progress in the study of higher dimensional actions (i.e. Zd or Rd with d>1). This book represents the proceedings of the 1993-4 Warwick Symposium on Zd actions. It comprises a mixture of surveys and original articles that span many of the diverse facets of the subject, including important connections with statistical mechanics, number theory and algebra. Researchers in ergodic theory and related fields will find that this book is an invaluable resource. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; INTRODUCTION; Ergodic Ramsey Theory-an Update; 0. Introduction.; 1. Three main principles of Ramsey theory and its connectionwith the ergodic theory of multiple recurrence.; 2. Special case of polynomial Szemeredi theorem: single recurrence.; 3. Discourse on /?N and some of its applications.; 4. IP-polynomials, recurrence, and polynomialHales-Jewett theorem.; 5. Some open problems and conjectures.; REFERENCES; Flows on homogeneous spaces: a review; Introduction; 1 Homogeneous spaces -- an overview; 2 Ergodicity; 3 Dense orbits; some early results | |
505 | 8 | |a 4 Conjectures of Oppenheim and Raghunathan 5 Invariant measures of unipotent flows; 6 Homecoming of trajectories of unipotent flows; 7 Distribution and closures of orbits; 8 Aftermath of Ratner's work; 9 Miscellanea; References; The Variational Principle For Hausdorff Dimension:A Survey; 1. Introduction; 2. The conformal case; 3. Nonconformal maps; 4. Concluding remarks; REFERENCES; Boundaries Of Invariant Markov Operators The Identification Problem; 0.1. General Markov operators.; 0.2. Examples of Markov operators.; 0.3. Invariant Markov operators. | |
505 | 8 | |a 0.4. Quotients of Markov operators.0.5. Boundary theory of Markov operators.; 1. THE MARTIN BOUNDARY; 2. THE POISSON BOUNDARY; 3. SEMI-SIMPLE LIE GROUPS AND SYMMETRIC SPACES; REFERENCES; Squaring And Cubing The Circle -Rudolph'S Theorem; 1. Generalities; 2. Endomorphisms of the circle; 3. Rudolph's comparative entropy lemma; References; A Survey of Recent K-Theoretic Invariants for Dynamical Systems; Section 1: Introduction; Section 2: Topological Equivalence Relations; Section 3: Examples; Section 4: C*-algebras; Section 5: K-Theory; Section 6: Invariant Measures | |
505 | 8 | |a Section 7: K-Theory of AF-Equivalence RelationsSection 8: Singly Generated Equivalence Relations and the Pimsner-Voiculescu Sequence; Section 9: Orbit Equivalence; Section 10: Factors and Sub-Equivalence Relations; References; Miles of Tile*; I. The Wang/Berger phenomenon; II. The pinwheel and Penrose tilings; III. Statistical mechanics and tilings; IV. A new form of symmetry; Bibliography; Overlapping cylinders: the size of a dynamically defined Cantor-set; 1 Introduction; 2 The self similar case in dimension one; 3 Horseshoes with overlapping cylinders; References | |
505 | 8 | |a Uniformity in the Polynomial Szemerédi Theorem0. Introduction; 1. Measure theoretic preliminaries.; 2. Weakly mixing extensions.; 3. Uniform polynomial Szemeredi theorem for distal systems.; 4. Appendix: Proof of Theorem 3.2.; REFERENCES; Some 2-d Symbolic Dynamical Systems: Entropy and Mixing; 1 Introduction; 2 The Iceberg Model: Measures of Maximal Entropy and Mixing; 3 The Generalized Hard Core Model: Measuresof Maximal Entropy and Mixing; 4 Spanning Trees and Dominoes: Measuresof Maximal Entropy and Mixing; References; A note on certain rigid subshifts; Abstract; Introduction; 1. Spaces | |
546 | |a English. | ||
650 | 0 | |a Differentiable dynamical systems |v Congresses. | |
650 | 0 | |a Ergodic theory |v Congresses. | |
650 | 6 | |a Dynamique différentiable |v Congrès. | |
650 | 6 | |a Théorie ergodique |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Ergodic theory |2 fast | |
650 | 7 | |a Zahlentheorie |2 gnd |0 http://d-nb.info/gnd/4067277-3 | |
650 | 7 | |a Ergodentheorie |2 gnd |0 http://d-nb.info/gnd/4015246-7 | |
650 | 1 | 7 | |a Ergodiciteit. |2 gtt |
650 | 1 | 7 | |a Z-bosonen. |2 gtt |
650 | 7 | |a Dynamique différentiable |x Congrès. |2 ram | |
650 | 7 | |a Théorie ergodique |x Congrès. |2 ram | |
655 | 0 | |a Electronic books. | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Pollicott, Mark. |0 http://id.loc.gov/authorities/names/nr91016789 | |
700 | 1 | |a Schmidt, Klaus, |d 1943- |1 https://id.oclc.org/worldcat/entity/E39PBJwdcGMjdGHQYjBQrhB773 |0 http://id.loc.gov/authorities/names/n90643666 | |
758 | |i has work: |a Ergodic theory of Zd actions (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFMmhj7xhDg4yrCPxbyBP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Ergodic theory of Zd actions. |d Cambridge ; New York : Cambridge University Press, 1996 |w (DLC) 96001584 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 228. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10468889 | ||
938 | |a EBSCOhost |b EBSC |n 552520 | ||
938 | |a YBP Library Services |b YANK |n 10370379 | ||
938 | |a YBP Library Services |b YANK |n 10405666 | ||
938 | |a YBP Library Services |b YANK |n 10689749 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn837286973 |
---|---|
_version_ | 1813903606671212544 |
adam_text | |
any_adam_object | |
author2 | Pollicott, Mark Schmidt, Klaus, 1943- |
author2_role | |
author2_variant | m p mp k s ks |
author_GND | http://id.loc.gov/authorities/names/nr91016789 http://id.loc.gov/authorities/names/n90643666 |
author_facet | Pollicott, Mark Schmidt, Klaus, 1943- |
author_sort | Pollicott, Mark |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.8 |
callnumber-search | QA614.8 |
callnumber-sort | QA 3614.8 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; INTRODUCTION; Ergodic Ramsey Theory-an Update; 0. Introduction.; 1. Three main principles of Ramsey theory and its connectionwith the ergodic theory of multiple recurrence.; 2. Special case of polynomial Szemeredi theorem: single recurrence.; 3. Discourse on /?N and some of its applications.; 4. IP-polynomials, recurrence, and polynomialHales-Jewett theorem.; 5. Some open problems and conjectures.; REFERENCES; Flows on homogeneous spaces: a review; Introduction; 1 Homogeneous spaces -- an overview; 2 Ergodicity; 3 Dense orbits; some early results 4 Conjectures of Oppenheim and Raghunathan 5 Invariant measures of unipotent flows; 6 Homecoming of trajectories of unipotent flows; 7 Distribution and closures of orbits; 8 Aftermath of Ratner's work; 9 Miscellanea; References; The Variational Principle For Hausdorff Dimension:A Survey; 1. Introduction; 2. The conformal case; 3. Nonconformal maps; 4. Concluding remarks; REFERENCES; Boundaries Of Invariant Markov Operators The Identification Problem; 0.1. General Markov operators.; 0.2. Examples of Markov operators.; 0.3. Invariant Markov operators. 0.4. Quotients of Markov operators.0.5. Boundary theory of Markov operators.; 1. THE MARTIN BOUNDARY; 2. THE POISSON BOUNDARY; 3. SEMI-SIMPLE LIE GROUPS AND SYMMETRIC SPACES; REFERENCES; Squaring And Cubing The Circle -Rudolph'S Theorem; 1. Generalities; 2. Endomorphisms of the circle; 3. Rudolph's comparative entropy lemma; References; A Survey of Recent K-Theoretic Invariants for Dynamical Systems; Section 1: Introduction; Section 2: Topological Equivalence Relations; Section 3: Examples; Section 4: C*-algebras; Section 5: K-Theory; Section 6: Invariant Measures Section 7: K-Theory of AF-Equivalence RelationsSection 8: Singly Generated Equivalence Relations and the Pimsner-Voiculescu Sequence; Section 9: Orbit Equivalence; Section 10: Factors and Sub-Equivalence Relations; References; Miles of Tile*; I. The Wang/Berger phenomenon; II. The pinwheel and Penrose tilings; III. Statistical mechanics and tilings; IV. A new form of symmetry; Bibliography; Overlapping cylinders: the size of a dynamically defined Cantor-set; 1 Introduction; 2 The self similar case in dimension one; 3 Horseshoes with overlapping cylinders; References Uniformity in the Polynomial Szemerédi Theorem0. Introduction; 1. Measure theoretic preliminaries.; 2. Weakly mixing extensions.; 3. Uniform polynomial Szemeredi theorem for distal systems.; 4. Appendix: Proof of Theorem 3.2.; REFERENCES; Some 2-d Symbolic Dynamical Systems: Entropy and Mixing; 1 Introduction; 2 The Iceberg Model: Measures of Maximal Entropy and Mixing; 3 The Generalized Hard Core Model: Measuresof Maximal Entropy and Mixing; 4 Spanning Trees and Dominoes: Measuresof Maximal Entropy and Mixing; References; A note on certain rigid subshifts; Abstract; Introduction; 1. Spaces |
ctrlnum | (OCoLC)837286973 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07392cam a2200937 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn837286973</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130409s1996 enka ob 100 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 96001584 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">HS0</subfield><subfield code="d">OCL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">732957911</subfield><subfield code="a">1109289447</subfield><subfield code="a">1162529492</subfield><subfield code="a">1241860591</subfield><subfield code="a">1242485057</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362475</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362474</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662812</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662815</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521576881</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521576888</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139886711</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139886710</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107367387</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107367388</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107371953</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107371958</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107369568</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107369566</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299405010</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299405011</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107364922</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107364929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)837286973</subfield><subfield code="z">(OCoLC)732957911</subfield><subfield code="z">(OCoLC)1109289447</subfield><subfield code="z">(OCoLC)1162529492</subfield><subfield code="z">(OCoLC)1241860591</subfield><subfield code="z">(OCoLC)1242485057</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Ergodic theory of Zd actions :</subfield><subfield code="b">proceedings of the Warwick symposium, 1993-4 /</subfield><subfield code="c">edited by Mark Pollicott, Klaus Schmidt.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 484 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">228</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on Apr. 9, 2013).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">On t.p. "d" in "Zd" is superscript.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical theory of dynamical systems has tended to concentrate on Z-actions or R-actions. However in recent years there has been considerable progress in the study of higher dimensional actions (i.e. Zd or Rd with d>1). This book represents the proceedings of the 1993-4 Warwick Symposium on Zd actions. It comprises a mixture of surveys and original articles that span many of the diverse facets of the subject, including important connections with statistical mechanics, number theory and algebra. Researchers in ergodic theory and related fields will find that this book is an invaluable resource.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; INTRODUCTION; Ergodic Ramsey Theory-an Update; 0. Introduction.; 1. Three main principles of Ramsey theory and its connectionwith the ergodic theory of multiple recurrence.; 2. Special case of polynomial Szemeredi theorem: single recurrence.; 3. Discourse on /?N and some of its applications.; 4. IP-polynomials, recurrence, and polynomialHales-Jewett theorem.; 5. Some open problems and conjectures.; REFERENCES; Flows on homogeneous spaces: a review; Introduction; 1 Homogeneous spaces -- an overview; 2 Ergodicity; 3 Dense orbits; some early results</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Conjectures of Oppenheim and Raghunathan 5 Invariant measures of unipotent flows; 6 Homecoming of trajectories of unipotent flows; 7 Distribution and closures of orbits; 8 Aftermath of Ratner's work; 9 Miscellanea; References; The Variational Principle For Hausdorff Dimension:A Survey; 1. Introduction; 2. The conformal case; 3. Nonconformal maps; 4. Concluding remarks; REFERENCES; Boundaries Of Invariant Markov Operators The Identification Problem; 0.1. General Markov operators.; 0.2. Examples of Markov operators.; 0.3. Invariant Markov operators.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">0.4. Quotients of Markov operators.0.5. Boundary theory of Markov operators.; 1. THE MARTIN BOUNDARY; 2. THE POISSON BOUNDARY; 3. SEMI-SIMPLE LIE GROUPS AND SYMMETRIC SPACES; REFERENCES; Squaring And Cubing The Circle -Rudolph'S Theorem; 1. Generalities; 2. Endomorphisms of the circle; 3. Rudolph's comparative entropy lemma; References; A Survey of Recent K-Theoretic Invariants for Dynamical Systems; Section 1: Introduction; Section 2: Topological Equivalence Relations; Section 3: Examples; Section 4: C*-algebras; Section 5: K-Theory; Section 6: Invariant Measures</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Section 7: K-Theory of AF-Equivalence RelationsSection 8: Singly Generated Equivalence Relations and the Pimsner-Voiculescu Sequence; Section 9: Orbit Equivalence; Section 10: Factors and Sub-Equivalence Relations; References; Miles of Tile*; I. The Wang/Berger phenomenon; II. The pinwheel and Penrose tilings; III. Statistical mechanics and tilings; IV. A new form of symmetry; Bibliography; Overlapping cylinders: the size of a dynamically defined Cantor-set; 1 Introduction; 2 The self similar case in dimension one; 3 Horseshoes with overlapping cylinders; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Uniformity in the Polynomial Szemerédi Theorem0. Introduction; 1. Measure theoretic preliminaries.; 2. Weakly mixing extensions.; 3. Uniform polynomial Szemeredi theorem for distal systems.; 4. Appendix: Proof of Theorem 3.2.; REFERENCES; Some 2-d Symbolic Dynamical Systems: Entropy and Mixing; 1 Introduction; 2 The Iceberg Model: Measures of Maximal Entropy and Mixing; 3 The Generalized Hard Core Model: Measuresof Maximal Entropy and Mixing; 4 Spanning Trees and Dominoes: Measuresof Maximal Entropy and Mixing; References; A note on certain rigid subshifts; Abstract; Introduction; 1. Spaces</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ergodic theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie ergodique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4067277-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4015246-7</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Ergodiciteit.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Z-bosonen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamique différentiable</subfield><subfield code="x">Congrès.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie ergodique</subfield><subfield code="x">Congrès.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollicott, Mark.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr91016789</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Klaus,</subfield><subfield code="d">1943-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwdcGMjdGHQYjBQrhB773</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90643666</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Ergodic theory of Zd actions (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFMmhj7xhDg4yrCPxbyBP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Ergodic theory of Zd actions.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1996</subfield><subfield code="w">(DLC) 96001584</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">228.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10468889</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552520</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370379</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405666</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10689749</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Electronic books. Conference papers and proceedings fast |
genre_facet | Electronic books. Conference papers and proceedings |
id | ZDB-4-EBA-ocn837286973 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:22Z |
institution | BVB |
isbn | 9781107362475 1107362474 9780511662812 0511662815 1139886711 9781139886710 1107367387 9781107367388 1107371953 9781107371958 1107369568 9781107369566 1299405010 9781299405011 1107364922 9781107364929 |
language | English |
oclc_num | 837286973 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (viii, 484 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / edited by Mark Pollicott, Klaus Schmidt. Cambridge ; New York : Cambridge University Press, 1996. 1 online resource (viii, 484 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 228 Title from PDF title page (viewed on Apr. 9, 2013). On t.p. "d" in "Zd" is superscript. Includes bibliographical references. The classical theory of dynamical systems has tended to concentrate on Z-actions or R-actions. However in recent years there has been considerable progress in the study of higher dimensional actions (i.e. Zd or Rd with d>1). This book represents the proceedings of the 1993-4 Warwick Symposium on Zd actions. It comprises a mixture of surveys and original articles that span many of the diverse facets of the subject, including important connections with statistical mechanics, number theory and algebra. Researchers in ergodic theory and related fields will find that this book is an invaluable resource. Cover; Title; Copyright; Contents; INTRODUCTION; Ergodic Ramsey Theory-an Update; 0. Introduction.; 1. Three main principles of Ramsey theory and its connectionwith the ergodic theory of multiple recurrence.; 2. Special case of polynomial Szemeredi theorem: single recurrence.; 3. Discourse on /?N and some of its applications.; 4. IP-polynomials, recurrence, and polynomialHales-Jewett theorem.; 5. Some open problems and conjectures.; REFERENCES; Flows on homogeneous spaces: a review; Introduction; 1 Homogeneous spaces -- an overview; 2 Ergodicity; 3 Dense orbits; some early results 4 Conjectures of Oppenheim and Raghunathan 5 Invariant measures of unipotent flows; 6 Homecoming of trajectories of unipotent flows; 7 Distribution and closures of orbits; 8 Aftermath of Ratner's work; 9 Miscellanea; References; The Variational Principle For Hausdorff Dimension:A Survey; 1. Introduction; 2. The conformal case; 3. Nonconformal maps; 4. Concluding remarks; REFERENCES; Boundaries Of Invariant Markov Operators The Identification Problem; 0.1. General Markov operators.; 0.2. Examples of Markov operators.; 0.3. Invariant Markov operators. 0.4. Quotients of Markov operators.0.5. Boundary theory of Markov operators.; 1. THE MARTIN BOUNDARY; 2. THE POISSON BOUNDARY; 3. SEMI-SIMPLE LIE GROUPS AND SYMMETRIC SPACES; REFERENCES; Squaring And Cubing The Circle -Rudolph'S Theorem; 1. Generalities; 2. Endomorphisms of the circle; 3. Rudolph's comparative entropy lemma; References; A Survey of Recent K-Theoretic Invariants for Dynamical Systems; Section 1: Introduction; Section 2: Topological Equivalence Relations; Section 3: Examples; Section 4: C*-algebras; Section 5: K-Theory; Section 6: Invariant Measures Section 7: K-Theory of AF-Equivalence RelationsSection 8: Singly Generated Equivalence Relations and the Pimsner-Voiculescu Sequence; Section 9: Orbit Equivalence; Section 10: Factors and Sub-Equivalence Relations; References; Miles of Tile*; I. The Wang/Berger phenomenon; II. The pinwheel and Penrose tilings; III. Statistical mechanics and tilings; IV. A new form of symmetry; Bibliography; Overlapping cylinders: the size of a dynamically defined Cantor-set; 1 Introduction; 2 The self similar case in dimension one; 3 Horseshoes with overlapping cylinders; References Uniformity in the Polynomial Szemerédi Theorem0. Introduction; 1. Measure theoretic preliminaries.; 2. Weakly mixing extensions.; 3. Uniform polynomial Szemeredi theorem for distal systems.; 4. Appendix: Proof of Theorem 3.2.; REFERENCES; Some 2-d Symbolic Dynamical Systems: Entropy and Mixing; 1 Introduction; 2 The Iceberg Model: Measures of Maximal Entropy and Mixing; 3 The Generalized Hard Core Model: Measuresof Maximal Entropy and Mixing; 4 Spanning Trees and Dominoes: Measuresof Maximal Entropy and Mixing; References; A note on certain rigid subshifts; Abstract; Introduction; 1. Spaces English. Differentiable dynamical systems Congresses. Ergodic theory Congresses. Dynamique différentiable Congrès. Théorie ergodique Congrès. MATHEMATICS Topology. bisacsh Differentiable dynamical systems fast Ergodic theory fast Zahlentheorie gnd http://d-nb.info/gnd/4067277-3 Ergodentheorie gnd http://d-nb.info/gnd/4015246-7 Ergodiciteit. gtt Z-bosonen. gtt Dynamique différentiable Congrès. ram Théorie ergodique Congrès. ram Electronic books. Conference papers and proceedings fast Pollicott, Mark. http://id.loc.gov/authorities/names/nr91016789 Schmidt, Klaus, 1943- https://id.oclc.org/worldcat/entity/E39PBJwdcGMjdGHQYjBQrhB773 http://id.loc.gov/authorities/names/n90643666 has work: Ergodic theory of Zd actions (Text) https://id.oclc.org/worldcat/entity/E39PCGFMmhj7xhDg4yrCPxbyBP https://id.oclc.org/worldcat/ontology/hasWork Print version: Ergodic theory of Zd actions. Cambridge ; New York : Cambridge University Press, 1996 (DLC) 96001584 London Mathematical Society lecture note series ; 228. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520 Volltext |
spellingShingle | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; INTRODUCTION; Ergodic Ramsey Theory-an Update; 0. Introduction.; 1. Three main principles of Ramsey theory and its connectionwith the ergodic theory of multiple recurrence.; 2. Special case of polynomial Szemeredi theorem: single recurrence.; 3. Discourse on /?N and some of its applications.; 4. IP-polynomials, recurrence, and polynomialHales-Jewett theorem.; 5. Some open problems and conjectures.; REFERENCES; Flows on homogeneous spaces: a review; Introduction; 1 Homogeneous spaces -- an overview; 2 Ergodicity; 3 Dense orbits; some early results 4 Conjectures of Oppenheim and Raghunathan 5 Invariant measures of unipotent flows; 6 Homecoming of trajectories of unipotent flows; 7 Distribution and closures of orbits; 8 Aftermath of Ratner's work; 9 Miscellanea; References; The Variational Principle For Hausdorff Dimension:A Survey; 1. Introduction; 2. The conformal case; 3. Nonconformal maps; 4. Concluding remarks; REFERENCES; Boundaries Of Invariant Markov Operators The Identification Problem; 0.1. General Markov operators.; 0.2. Examples of Markov operators.; 0.3. Invariant Markov operators. 0.4. Quotients of Markov operators.0.5. Boundary theory of Markov operators.; 1. THE MARTIN BOUNDARY; 2. THE POISSON BOUNDARY; 3. SEMI-SIMPLE LIE GROUPS AND SYMMETRIC SPACES; REFERENCES; Squaring And Cubing The Circle -Rudolph'S Theorem; 1. Generalities; 2. Endomorphisms of the circle; 3. Rudolph's comparative entropy lemma; References; A Survey of Recent K-Theoretic Invariants for Dynamical Systems; Section 1: Introduction; Section 2: Topological Equivalence Relations; Section 3: Examples; Section 4: C*-algebras; Section 5: K-Theory; Section 6: Invariant Measures Section 7: K-Theory of AF-Equivalence RelationsSection 8: Singly Generated Equivalence Relations and the Pimsner-Voiculescu Sequence; Section 9: Orbit Equivalence; Section 10: Factors and Sub-Equivalence Relations; References; Miles of Tile*; I. The Wang/Berger phenomenon; II. The pinwheel and Penrose tilings; III. Statistical mechanics and tilings; IV. A new form of symmetry; Bibliography; Overlapping cylinders: the size of a dynamically defined Cantor-set; 1 Introduction; 2 The self similar case in dimension one; 3 Horseshoes with overlapping cylinders; References Uniformity in the Polynomial Szemerédi Theorem0. Introduction; 1. Measure theoretic preliminaries.; 2. Weakly mixing extensions.; 3. Uniform polynomial Szemeredi theorem for distal systems.; 4. Appendix: Proof of Theorem 3.2.; REFERENCES; Some 2-d Symbolic Dynamical Systems: Entropy and Mixing; 1 Introduction; 2 The Iceberg Model: Measures of Maximal Entropy and Mixing; 3 The Generalized Hard Core Model: Measuresof Maximal Entropy and Mixing; 4 Spanning Trees and Dominoes: Measuresof Maximal Entropy and Mixing; References; A note on certain rigid subshifts; Abstract; Introduction; 1. Spaces Differentiable dynamical systems Congresses. Ergodic theory Congresses. Dynamique différentiable Congrès. Théorie ergodique Congrès. MATHEMATICS Topology. bisacsh Differentiable dynamical systems fast Ergodic theory fast Zahlentheorie gnd http://d-nb.info/gnd/4067277-3 Ergodentheorie gnd http://d-nb.info/gnd/4015246-7 Ergodiciteit. gtt Z-bosonen. gtt Dynamique différentiable Congrès. ram Théorie ergodique Congrès. ram |
subject_GND | http://d-nb.info/gnd/4067277-3 http://d-nb.info/gnd/4015246-7 |
title | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / |
title_auth | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / |
title_exact_search | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / |
title_full | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / edited by Mark Pollicott, Klaus Schmidt. |
title_fullStr | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / edited by Mark Pollicott, Klaus Schmidt. |
title_full_unstemmed | Ergodic theory of Zd actions : proceedings of the Warwick symposium, 1993-4 / edited by Mark Pollicott, Klaus Schmidt. |
title_short | Ergodic theory of Zd actions : |
title_sort | ergodic theory of zd actions proceedings of the warwick symposium 1993 4 |
title_sub | proceedings of the Warwick symposium, 1993-4 / |
topic | Differentiable dynamical systems Congresses. Ergodic theory Congresses. Dynamique différentiable Congrès. Théorie ergodique Congrès. MATHEMATICS Topology. bisacsh Differentiable dynamical systems fast Ergodic theory fast Zahlentheorie gnd http://d-nb.info/gnd/4067277-3 Ergodentheorie gnd http://d-nb.info/gnd/4015246-7 Ergodiciteit. gtt Z-bosonen. gtt Dynamique différentiable Congrès. ram Théorie ergodique Congrès. ram |
topic_facet | Differentiable dynamical systems Congresses. Ergodic theory Congresses. Dynamique différentiable Congrès. Théorie ergodique Congrès. MATHEMATICS Topology. Differentiable dynamical systems Ergodic theory Zahlentheorie Ergodentheorie Ergodiciteit. Z-bosonen. Electronic books. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552520 |
work_keys_str_mv | AT pollicottmark ergodictheoryofzdactionsproceedingsofthewarwicksymposium19934 AT schmidtklaus ergodictheoryofzdactionsproceedingsofthewarwicksymposium19934 |