Geometric group theory.: proceedings of the symposium held in Sussex, 1991 / Volume 1 :
The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. This first volume contains contributions from many of the world's leading figures in this field, and their contri...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY, USA :
Cambridge University Press,
1993.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
181. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. This first volume contains contributions from many of the world's leading figures in this field, and their contributions demonstrate the many interesting facets of geometrical group theory. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library. |
Beschreibung: | Title from PDF title page (viewed on Apr. 9, 2013). Papers presented at Geometric Group Theory Symposium in Sussex, in 1991. |
Beschreibung: | 1 online resource (212 pages) : illustrations. |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107361898 1107361893 9780511661860 051166186X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn837266443 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130409s1993 enka ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d OCL |d OCLCQ |d UAB |d VTS |d REC |d STF |d M8D |d OL$ |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ | ||
019 | |a 1102533511 | ||
020 | |a 9781107361898 |q (electronic bk.) | ||
020 | |a 1107361893 |q (electronic bk.) | ||
020 | |a 9780511661860 | ||
020 | |a 051166186X | ||
035 | |a (OCoLC)837266443 |z (OCoLC)1102533511 | ||
050 | 4 | |a QA174.2 | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512.2 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Geometric group theory. |n Volume 1 : |b proceedings of the symposium held in Sussex, 1991 / |c edited by Graham A. Niblo and Martin A. Roller. |
260 | |a Cambridge ; |a New York, NY, USA : |b Cambridge University Press, |c 1993. | ||
300 | |a 1 online resource (212 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 181 | |
500 | |a Title from PDF title page (viewed on Apr. 9, 2013). | ||
500 | |a Papers presented at Geometric Group Theory Symposium in Sussex, in 1991. | ||
504 | |a Includes bibliographical references. | ||
520 | |a The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. This first volume contains contributions from many of the world's leading figures in this field, and their contributions demonstrate the many interesting facets of geometrical group theory. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; List of Participants; Group Actions and Riemann Surfaces; 1. Introduction; 2. The Uniformisation Theorem; 3. Automorphic functions; 4. The geometry of Riemann surfaces; 5. Actions of discrete Mobius groups; 6. Analytic functions again; 7. The epilogue; References; The virtual cohomological dimension of Coxeter groups; Introduction; 1. The construction; 2. Example; References; The Geometric Invariants of a Group: A Survey with Emphasis on the Homotopical Approach; 1. Introduction; 2. Essentially isometric action on R | |
505 | 8 | |a 3. The homotopical geometric invariant4. Criteria and openness result; 5. The homological geometric invariant; 6. Algebraization; 7. Some applications; 8. Polyhedrality; References; String Rewriting -- A Survey for Group Theorists; References; One Relator Products with High-Powered Relators; 1. Introduction; 2. Pictures; 3. Main results; 4. Counterexamples to conjecture F; 5. Applications; References; An Inaccessible Group; 1. Introduction; 2. Constructing the example; 3. Constructing the lattice; References; Isoperimetric and Isodiametric Functions of Finite Presentations | |
505 | 8 | |a 1. Introduction and definitions2. Relation with the word problem; 3. Examples and applications; 4. Relation with peak reduction algorithms; References; On Hilbert's Metric for Simplices; 1. Generalities on Hilbert metrics; 2. The case of simplices; 3. Remarks and questions; References; Software for Automatic Groups, Isomorphism Testing and Finitely Presented Groups; Introduction; 1. Automata; 2. Isomorphism testing; 3. Quotpic; References; Proving Certain Groups Infinite; References; Some Applications of Small Cancellation Theory to One-Relator Groups and One-Relator Products; Introduction | |
505 | 8 | |a 1. The non-small cancellation groups2. The extended small cancellation theory; 3. Solution of the conjugacy problem; 4. One relator products; References; A Group Theoretic Proof of the Torus Theorem; 1. Introduction; 2. Deduction of the Torus Theorem from Theorem 1.2; 3. Poincare duality groups; 4. Ends of pairs of groups; 5. The proof of Theorem 1.2; References; N-Torsion and Applications; 0. Introduction; 1. N-torsion; 2. An example; 3. Topological applications; References; Surface Groups and Quasi-Convexity; Introduction; 1. Quasi-convex subgroups; 2. Surface groups | |
505 | 8 | |a 3. An example in dimension three4. Remarks; 5. Rational structures on groups; References; Constructing Group Actions on Trees; Introduction; 1. Types of group actions on trees; 2. Trees and nested sets; References; Brick's Quasi Simple Filtrations for Groups and 3-Manifolds; 1. Polyhedral niceties; 2. Quasi simple filtration; 3. Qsf-covered polyhedra and groups; 4. Immersions and towers; 5. Unions of qsf spaces; 6. Universal covers of 3-manifolds; 7. Further problems; References; A Note on Accessibility; References; Geometric Group Theory 1991 Problem List | |
650 | 0 | |a Geometric group theory |v Congresses. | |
650 | 6 | |a Théorie géométrique des groupes |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Geometric group theory |2 fast | |
650 | 7 | |a Groupes, théorie géométrique des |x Congrès. |2 ram | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Niblo, Graham A. | |
700 | 1 | |a Roller, Martin A. | |
711 | 2 | |a Geometric Group Theory Symposium |d (1991 : |c Sussex, England) |0 http://id.loc.gov/authorities/names/nr93040476 | |
776 | 1 | |c Print version: |z 9780521435291. | |
830 | 0 | |a London Mathematical Society lecture note series ; |v 181. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552408 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 552408 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn837266443 |
---|---|
_version_ | 1816882228576124928 |
adam_text | |
any_adam_object | |
author2 | Niblo, Graham A. Roller, Martin A. |
author2_role | |
author2_variant | g a n ga gan m a r ma mar |
author_corporate | Geometric Group Theory Symposium |
author_corporate_role | |
author_facet | Niblo, Graham A. Roller, Martin A. Geometric Group Theory Symposium |
author_sort | Niblo, Graham A. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 |
callnumber-search | QA174.2 |
callnumber-sort | QA 3174.2 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; List of Participants; Group Actions and Riemann Surfaces; 1. Introduction; 2. The Uniformisation Theorem; 3. Automorphic functions; 4. The geometry of Riemann surfaces; 5. Actions of discrete Mobius groups; 6. Analytic functions again; 7. The epilogue; References; The virtual cohomological dimension of Coxeter groups; Introduction; 1. The construction; 2. Example; References; The Geometric Invariants of a Group: A Survey with Emphasis on the Homotopical Approach; 1. Introduction; 2. Essentially isometric action on R 3. The homotopical geometric invariant4. Criteria and openness result; 5. The homological geometric invariant; 6. Algebraization; 7. Some applications; 8. Polyhedrality; References; String Rewriting -- A Survey for Group Theorists; References; One Relator Products with High-Powered Relators; 1. Introduction; 2. Pictures; 3. Main results; 4. Counterexamples to conjecture F; 5. Applications; References; An Inaccessible Group; 1. Introduction; 2. Constructing the example; 3. Constructing the lattice; References; Isoperimetric and Isodiametric Functions of Finite Presentations 1. Introduction and definitions2. Relation with the word problem; 3. Examples and applications; 4. Relation with peak reduction algorithms; References; On Hilbert's Metric for Simplices; 1. Generalities on Hilbert metrics; 2. The case of simplices; 3. Remarks and questions; References; Software for Automatic Groups, Isomorphism Testing and Finitely Presented Groups; Introduction; 1. Automata; 2. Isomorphism testing; 3. Quotpic; References; Proving Certain Groups Infinite; References; Some Applications of Small Cancellation Theory to One-Relator Groups and One-Relator Products; Introduction 1. The non-small cancellation groups2. The extended small cancellation theory; 3. Solution of the conjugacy problem; 4. One relator products; References; A Group Theoretic Proof of the Torus Theorem; 1. Introduction; 2. Deduction of the Torus Theorem from Theorem 1.2; 3. Poincare duality groups; 4. Ends of pairs of groups; 5. The proof of Theorem 1.2; References; N-Torsion and Applications; 0. Introduction; 1. N-torsion; 2. An example; 3. Topological applications; References; Surface Groups and Quasi-Convexity; Introduction; 1. Quasi-convex subgroups; 2. Surface groups 3. An example in dimension three4. Remarks; 5. Rational structures on groups; References; Constructing Group Actions on Trees; Introduction; 1. Types of group actions on trees; 2. Trees and nested sets; References; Brick's Quasi Simple Filtrations for Groups and 3-Manifolds; 1. Polyhedral niceties; 2. Quasi simple filtration; 3. Qsf-covered polyhedra and groups; 4. Immersions and towers; 5. Unions of qsf spaces; 6. Universal covers of 3-manifolds; 7. Further problems; References; A Note on Accessibility; References; Geometric Group Theory 1991 Problem List |
ctrlnum | (OCoLC)837266443 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05735cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn837266443</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130409s1993 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OL$</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1102533511</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361898</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361893</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661860</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051166186X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)837266443</subfield><subfield code="z">(OCoLC)1102533511</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA174.2</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Geometric group theory.</subfield><subfield code="n">Volume 1 :</subfield><subfield code="b">proceedings of the symposium held in Sussex, 1991 /</subfield><subfield code="c">edited by Graham A. Niblo and Martin A. Roller.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York, NY, USA :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (212 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">181</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on Apr. 9, 2013).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Papers presented at Geometric Group Theory Symposium in Sussex, in 1991.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. This first volume contains contributions from many of the world's leading figures in this field, and their contributions demonstrate the many interesting facets of geometrical group theory. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; List of Participants; Group Actions and Riemann Surfaces; 1. Introduction; 2. The Uniformisation Theorem; 3. Automorphic functions; 4. The geometry of Riemann surfaces; 5. Actions of discrete Mobius groups; 6. Analytic functions again; 7. The epilogue; References; The virtual cohomological dimension of Coxeter groups; Introduction; 1. The construction; 2. Example; References; The Geometric Invariants of a Group: A Survey with Emphasis on the Homotopical Approach; 1. Introduction; 2. Essentially isometric action on R</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. The homotopical geometric invariant4. Criteria and openness result; 5. The homological geometric invariant; 6. Algebraization; 7. Some applications; 8. Polyhedrality; References; String Rewriting -- A Survey for Group Theorists; References; One Relator Products with High-Powered Relators; 1. Introduction; 2. Pictures; 3. Main results; 4. Counterexamples to conjecture F; 5. Applications; References; An Inaccessible Group; 1. Introduction; 2. Constructing the example; 3. Constructing the lattice; References; Isoperimetric and Isodiametric Functions of Finite Presentations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction and definitions2. Relation with the word problem; 3. Examples and applications; 4. Relation with peak reduction algorithms; References; On Hilbert's Metric for Simplices; 1. Generalities on Hilbert metrics; 2. The case of simplices; 3. Remarks and questions; References; Software for Automatic Groups, Isomorphism Testing and Finitely Presented Groups; Introduction; 1. Automata; 2. Isomorphism testing; 3. Quotpic; References; Proving Certain Groups Infinite; References; Some Applications of Small Cancellation Theory to One-Relator Groups and One-Relator Products; Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. The non-small cancellation groups2. The extended small cancellation theory; 3. Solution of the conjugacy problem; 4. One relator products; References; A Group Theoretic Proof of the Torus Theorem; 1. Introduction; 2. Deduction of the Torus Theorem from Theorem 1.2; 3. Poincare duality groups; 4. Ends of pairs of groups; 5. The proof of Theorem 1.2; References; N-Torsion and Applications; 0. Introduction; 1. N-torsion; 2. An example; 3. Topological applications; References; Surface Groups and Quasi-Convexity; Introduction; 1. Quasi-convex subgroups; 2. Surface groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. An example in dimension three4. Remarks; 5. Rational structures on groups; References; Constructing Group Actions on Trees; Introduction; 1. Types of group actions on trees; 2. Trees and nested sets; References; Brick's Quasi Simple Filtrations for Groups and 3-Manifolds; 1. Polyhedral niceties; 2. Quasi simple filtration; 3. Qsf-covered polyhedra and groups; 4. Immersions and towers; 5. Unions of qsf spaces; 6. Universal covers of 3-manifolds; 7. Further problems; References; A Note on Accessibility; References; Geometric Group Theory 1991 Problem List</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometric group theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie géométrique des groupes</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes, théorie géométrique des</subfield><subfield code="x">Congrès.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niblo, Graham A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roller, Martin A.</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Geometric Group Theory Symposium</subfield><subfield code="d">(1991 :</subfield><subfield code="c">Sussex, England)</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr93040476</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="c">Print version:</subfield><subfield code="z">9780521435291.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">181.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552408</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552408</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn837266443 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/nr93040476 |
isbn | 9781107361898 1107361893 9780511661860 051166186X |
language | English |
oclc_num | 837266443 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (212 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Geometric group theory. Volume 1 : proceedings of the symposium held in Sussex, 1991 / edited by Graham A. Niblo and Martin A. Roller. Cambridge ; New York, NY, USA : Cambridge University Press, 1993. 1 online resource (212 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 181 Title from PDF title page (viewed on Apr. 9, 2013). Papers presented at Geometric Group Theory Symposium in Sussex, in 1991. Includes bibliographical references. The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. This first volume contains contributions from many of the world's leading figures in this field, and their contributions demonstrate the many interesting facets of geometrical group theory. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library. Cover; Title; Copyright; Contents; Preface; List of Participants; Group Actions and Riemann Surfaces; 1. Introduction; 2. The Uniformisation Theorem; 3. Automorphic functions; 4. The geometry of Riemann surfaces; 5. Actions of discrete Mobius groups; 6. Analytic functions again; 7. The epilogue; References; The virtual cohomological dimension of Coxeter groups; Introduction; 1. The construction; 2. Example; References; The Geometric Invariants of a Group: A Survey with Emphasis on the Homotopical Approach; 1. Introduction; 2. Essentially isometric action on R 3. The homotopical geometric invariant4. Criteria and openness result; 5. The homological geometric invariant; 6. Algebraization; 7. Some applications; 8. Polyhedrality; References; String Rewriting -- A Survey for Group Theorists; References; One Relator Products with High-Powered Relators; 1. Introduction; 2. Pictures; 3. Main results; 4. Counterexamples to conjecture F; 5. Applications; References; An Inaccessible Group; 1. Introduction; 2. Constructing the example; 3. Constructing the lattice; References; Isoperimetric and Isodiametric Functions of Finite Presentations 1. Introduction and definitions2. Relation with the word problem; 3. Examples and applications; 4. Relation with peak reduction algorithms; References; On Hilbert's Metric for Simplices; 1. Generalities on Hilbert metrics; 2. The case of simplices; 3. Remarks and questions; References; Software for Automatic Groups, Isomorphism Testing and Finitely Presented Groups; Introduction; 1. Automata; 2. Isomorphism testing; 3. Quotpic; References; Proving Certain Groups Infinite; References; Some Applications of Small Cancellation Theory to One-Relator Groups and One-Relator Products; Introduction 1. The non-small cancellation groups2. The extended small cancellation theory; 3. Solution of the conjugacy problem; 4. One relator products; References; A Group Theoretic Proof of the Torus Theorem; 1. Introduction; 2. Deduction of the Torus Theorem from Theorem 1.2; 3. Poincare duality groups; 4. Ends of pairs of groups; 5. The proof of Theorem 1.2; References; N-Torsion and Applications; 0. Introduction; 1. N-torsion; 2. An example; 3. Topological applications; References; Surface Groups and Quasi-Convexity; Introduction; 1. Quasi-convex subgroups; 2. Surface groups 3. An example in dimension three4. Remarks; 5. Rational structures on groups; References; Constructing Group Actions on Trees; Introduction; 1. Types of group actions on trees; 2. Trees and nested sets; References; Brick's Quasi Simple Filtrations for Groups and 3-Manifolds; 1. Polyhedral niceties; 2. Quasi simple filtration; 3. Qsf-covered polyhedra and groups; 4. Immersions and towers; 5. Unions of qsf spaces; 6. Universal covers of 3-manifolds; 7. Further problems; References; A Note on Accessibility; References; Geometric Group Theory 1991 Problem List Geometric group theory Congresses. Théorie géométrique des groupes Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Groupes, théorie géométrique des Congrès. ram Conference papers and proceedings fast Niblo, Graham A. Roller, Martin A. Geometric Group Theory Symposium (1991 : Sussex, England) http://id.loc.gov/authorities/names/nr93040476 Print version: 9780521435291. London Mathematical Society lecture note series ; 181. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552408 Volltext |
spellingShingle | Geometric group theory. proceedings of the symposium held in Sussex, 1991 / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; List of Participants; Group Actions and Riemann Surfaces; 1. Introduction; 2. The Uniformisation Theorem; 3. Automorphic functions; 4. The geometry of Riemann surfaces; 5. Actions of discrete Mobius groups; 6. Analytic functions again; 7. The epilogue; References; The virtual cohomological dimension of Coxeter groups; Introduction; 1. The construction; 2. Example; References; The Geometric Invariants of a Group: A Survey with Emphasis on the Homotopical Approach; 1. Introduction; 2. Essentially isometric action on R 3. The homotopical geometric invariant4. Criteria and openness result; 5. The homological geometric invariant; 6. Algebraization; 7. Some applications; 8. Polyhedrality; References; String Rewriting -- A Survey for Group Theorists; References; One Relator Products with High-Powered Relators; 1. Introduction; 2. Pictures; 3. Main results; 4. Counterexamples to conjecture F; 5. Applications; References; An Inaccessible Group; 1. Introduction; 2. Constructing the example; 3. Constructing the lattice; References; Isoperimetric and Isodiametric Functions of Finite Presentations 1. Introduction and definitions2. Relation with the word problem; 3. Examples and applications; 4. Relation with peak reduction algorithms; References; On Hilbert's Metric for Simplices; 1. Generalities on Hilbert metrics; 2. The case of simplices; 3. Remarks and questions; References; Software for Automatic Groups, Isomorphism Testing and Finitely Presented Groups; Introduction; 1. Automata; 2. Isomorphism testing; 3. Quotpic; References; Proving Certain Groups Infinite; References; Some Applications of Small Cancellation Theory to One-Relator Groups and One-Relator Products; Introduction 1. The non-small cancellation groups2. The extended small cancellation theory; 3. Solution of the conjugacy problem; 4. One relator products; References; A Group Theoretic Proof of the Torus Theorem; 1. Introduction; 2. Deduction of the Torus Theorem from Theorem 1.2; 3. Poincare duality groups; 4. Ends of pairs of groups; 5. The proof of Theorem 1.2; References; N-Torsion and Applications; 0. Introduction; 1. N-torsion; 2. An example; 3. Topological applications; References; Surface Groups and Quasi-Convexity; Introduction; 1. Quasi-convex subgroups; 2. Surface groups 3. An example in dimension three4. Remarks; 5. Rational structures on groups; References; Constructing Group Actions on Trees; Introduction; 1. Types of group actions on trees; 2. Trees and nested sets; References; Brick's Quasi Simple Filtrations for Groups and 3-Manifolds; 1. Polyhedral niceties; 2. Quasi simple filtration; 3. Qsf-covered polyhedra and groups; 4. Immersions and towers; 5. Unions of qsf spaces; 6. Universal covers of 3-manifolds; 7. Further problems; References; A Note on Accessibility; References; Geometric Group Theory 1991 Problem List Geometric group theory Congresses. Théorie géométrique des groupes Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Groupes, théorie géométrique des Congrès. ram |
title | Geometric group theory. proceedings of the symposium held in Sussex, 1991 / |
title_auth | Geometric group theory. proceedings of the symposium held in Sussex, 1991 / |
title_exact_search | Geometric group theory. proceedings of the symposium held in Sussex, 1991 / |
title_full | Geometric group theory. Volume 1 : proceedings of the symposium held in Sussex, 1991 / edited by Graham A. Niblo and Martin A. Roller. |
title_fullStr | Geometric group theory. Volume 1 : proceedings of the symposium held in Sussex, 1991 / edited by Graham A. Niblo and Martin A. Roller. |
title_full_unstemmed | Geometric group theory. Volume 1 : proceedings of the symposium held in Sussex, 1991 / edited by Graham A. Niblo and Martin A. Roller. |
title_short | Geometric group theory. |
title_sort | geometric group theory proceedings of the symposium held in sussex 1991 |
title_sub | proceedings of the symposium held in Sussex, 1991 / |
topic | Geometric group theory Congresses. Théorie géométrique des groupes Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Groupes, théorie géométrique des Congrès. ram |
topic_facet | Geometric group theory Congresses. Théorie géométrique des groupes Congrès. MATHEMATICS Group Theory. Geometric group theory Groupes, théorie géométrique des Congrès. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552408 |
work_keys_str_mv | AT niblograhama geometricgrouptheoryvolume1proceedingsofthesymposiumheldinsussex1991 AT rollermartina geometricgrouptheoryvolume1proceedingsofthesymposiumheldinsussex1991 AT geometricgrouptheorysymposiumsussexengland geometricgrouptheoryvolume1proceedingsofthesymposiumheldinsussex1991 |