Symplectic geometry /:
This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many othe...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
1993.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
192. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry. |
Beschreibung: | 1 online resource (236 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107361928 1107361923 1139884867 9781139884860 1107366836 9781107366831 1107371503 9781107371507 0511957424 9780511957420 0511526342 9780511526343 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836871758 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1993 enka ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d UKAHL |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708568859 |a 1274003536 | ||
020 | |a 9781107361928 |q (electronic bk.) | ||
020 | |a 1107361923 |q (electronic bk.) | ||
020 | |a 1139884867 | ||
020 | |a 9781139884860 | ||
020 | |a 1107366836 | ||
020 | |a 9781107366831 | ||
020 | |a 1107371503 | ||
020 | |a 9781107371507 | ||
020 | |a 0511957424 | ||
020 | |a 9780511957420 | ||
020 | |a 0511526342 | ||
020 | |a 9780511526343 | ||
020 | |z 0521446996 | ||
020 | |z 9780521446990 | ||
035 | |a (OCoLC)836871758 |z (OCoLC)708568859 |z (OCoLC)1274003536 | ||
050 | 4 | |a QA649 |b .S953 1993eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.3/6 |2 22 | |
084 | |a 31.55 |2 bcl | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Symplectic geometry / |c edited by Dietmar Salamon. |
260 | |a Cambridge : |b Cambridge University Press, |c 1993. | ||
300 | |a 1 online resource (236 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 192 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem | |
505 | 8 | |a 1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations | |
505 | 8 | |a A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction | |
505 | 8 | |a 1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces | |
505 | 8 | |a 5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin | |
546 | |a English. | ||
650 | 0 | |a Symplectic geometry. |0 http://id.loc.gov/authorities/subjects/sh2002004420 | |
650 | 6 | |a Géométrie symplectique. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Symplectic geometry |2 fast | |
650 | 1 | 7 | |a Symplectische ruimten. |2 gtt |
650 | 1 | 7 | |a Hamilton-vergelijkingen. |2 gtt |
650 | 7 | |a Géométrie différentielle. |2 ram | |
650 | 7 | |a Variétés symplectiques. |2 ram | |
700 | 1 | |a Salamon, D. |q (Dietmar) |1 https://id.oclc.org/worldcat/entity/E39PBJxcRHVJ8ygXjGmfr93WjC |0 http://id.loc.gov/authorities/names/n83162332 | |
776 | 0 | 8 | |i Print version: |t Symplectic geometry. |d Cambridge : Cambridge University Press, 1993 |z 0521446996 |w (DLC) 94151805 |w (OCoLC)29951149 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 192. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552496 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26385336 | ||
938 | |a ebrary |b EBRY |n ebr10447572 | ||
938 | |a EBSCOhost |b EBSC |n 552496 | ||
938 | |a YBP Library Services |b YANK |n 3275134 | ||
938 | |a YBP Library Services |b YANK |n 10370221 | ||
938 | |a YBP Library Services |b YANK |n 10405621 | ||
938 | |a YBP Library Services |b YANK |n 10689705 | ||
938 | |a YBP Library Services |b YANK |n 10370344 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836871758 |
---|---|
_version_ | 1816882228411498496 |
adam_text | |
any_adam_object | |
author2 | Salamon, D. (Dietmar) |
author2_role | |
author2_variant | d s ds |
author_GND | http://id.loc.gov/authorities/names/n83162332 |
author_facet | Salamon, D. (Dietmar) |
author_sort | Salamon, D. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .S953 1993eb |
callnumber-search | QA649 .S953 1993eb |
callnumber-sort | QA 3649 S953 41993EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem 1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction 1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces 5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin |
ctrlnum | (OCoLC)836871758 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06637cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836871758</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1993 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708568859</subfield><subfield code="a">1274003536</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361928</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361923</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139884867</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139884860</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107366836</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107366831</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107371503</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107371507</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511957424</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511957420</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526342</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526343</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521446996</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521446990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836871758</subfield><subfield code="z">(OCoLC)708568859</subfield><subfield code="z">(OCoLC)1274003536</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.S953 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Symplectic geometry /</subfield><subfield code="c">edited by Dietmar Salamon.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (236 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">192</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symplectic geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004420</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie symplectique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symplectic geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Symplectische ruimten.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Hamilton-vergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie différentielle.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés symplectiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salamon, D.</subfield><subfield code="q">(Dietmar)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxcRHVJ8ygXjGmfr93WjC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83162332</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Symplectic geometry.</subfield><subfield code="d">Cambridge : Cambridge University Press, 1993</subfield><subfield code="z">0521446996</subfield><subfield code="w">(DLC) 94151805</subfield><subfield code="w">(OCoLC)29951149</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">192.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552496</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385336</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10447572</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552496</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275134</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370221</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405621</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10689705</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370344</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836871758 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361928 1107361923 1139884867 9781139884860 1107366836 9781107366831 1107371503 9781107371507 0511957424 9780511957420 0511526342 9780511526343 |
language | English |
oclc_num | 836871758 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (236 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Symplectic geometry / edited by Dietmar Salamon. Cambridge : Cambridge University Press, 1993. 1 online resource (236 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 192 Includes bibliographical references. Print version record. This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry. Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem 1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction 1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces 5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin English. Symplectic geometry. http://id.loc.gov/authorities/subjects/sh2002004420 Géométrie symplectique. MATHEMATICS Geometry Differential. bisacsh Symplectic geometry fast Symplectische ruimten. gtt Hamilton-vergelijkingen. gtt Géométrie différentielle. ram Variétés symplectiques. ram Salamon, D. (Dietmar) https://id.oclc.org/worldcat/entity/E39PBJxcRHVJ8ygXjGmfr93WjC http://id.loc.gov/authorities/names/n83162332 Print version: Symplectic geometry. Cambridge : Cambridge University Press, 1993 0521446996 (DLC) 94151805 (OCoLC)29951149 London Mathematical Society lecture note series ; 192. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552496 Volltext |
spellingShingle | Symplectic geometry / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem 1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction 1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces 5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin Symplectic geometry. http://id.loc.gov/authorities/subjects/sh2002004420 Géométrie symplectique. MATHEMATICS Geometry Differential. bisacsh Symplectic geometry fast Symplectische ruimten. gtt Hamilton-vergelijkingen. gtt Géométrie différentielle. ram Variétés symplectiques. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004420 |
title | Symplectic geometry / |
title_auth | Symplectic geometry / |
title_exact_search | Symplectic geometry / |
title_full | Symplectic geometry / edited by Dietmar Salamon. |
title_fullStr | Symplectic geometry / edited by Dietmar Salamon. |
title_full_unstemmed | Symplectic geometry / edited by Dietmar Salamon. |
title_short | Symplectic geometry / |
title_sort | symplectic geometry |
topic | Symplectic geometry. http://id.loc.gov/authorities/subjects/sh2002004420 Géométrie symplectique. MATHEMATICS Geometry Differential. bisacsh Symplectic geometry fast Symplectische ruimten. gtt Hamilton-vergelijkingen. gtt Géométrie différentielle. ram Variétés symplectiques. ram |
topic_facet | Symplectic geometry. Géométrie symplectique. MATHEMATICS Geometry Differential. Symplectic geometry Symplectische ruimten. Hamilton-vergelijkingen. Géométrie différentielle. Variétés symplectiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552496 |
work_keys_str_mv | AT salamond symplecticgeometry |