Oligomorphic permutation groups /:
The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1990.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
152. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems. |
Beschreibung: | 1 online resource (viii, 160 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 145-154) and index. |
ISBN: | 9781107361638 110736163X 9780511549809 0511549806 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836871705 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1990 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d YDX |d REC |d STF |d M8D |d INARC |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 715168038 |a 1044561832 |a 1045417203 | ||
020 | |a 9781107361638 |q (electronic bk.) | ||
020 | |a 110736163X |q (electronic bk.) | ||
020 | |a 9780511549809 |q (e-book) | ||
020 | |a 0511549806 |q (e-book) | ||
020 | |z 0521388368 | ||
020 | |z 9780521388368 | ||
035 | |a (OCoLC)836871705 |z (OCoLC)715168038 |z (OCoLC)1044561832 |z (OCoLC)1045417203 | ||
050 | 4 | |a QA171 |b .C257 1990eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 31.21 |2 bcl | ||
084 | |a *20B07 |2 msc | ||
084 | |a 03C60 |2 msc | ||
084 | |a 20-02 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Cameron, Peter J. |q (Peter Jephson), |d 1947- |1 https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 |0 http://id.loc.gov/authorities/names/n81072709 | |
245 | 1 | 0 | |a Oligomorphic permutation groups / |c Peter J. Cameron. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1990. | ||
300 | |a 1 online resource (viii, 160 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 152 | |
504 | |a Includes bibliographical references (pages 145-154) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems. | ||
505 | 0 | |a Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products | |
505 | 8 | |a 3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups | |
505 | 8 | |a 5.7 Orbits on infinite setsReferences; Index | |
650 | 0 | |a Permutation groups. |0 http://id.loc.gov/authorities/subjects/sh85099993 | |
650 | 6 | |a Groupes de permutations. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Permutation groups |2 fast | |
650 | 1 | 7 | |a Permutatiegroepen. |2 gtt |
650 | 7 | |a Groupes de permutations. |2 ram | |
776 | 0 | 8 | |i Print version: |a Cameron, Peter J. (Peter Jephson), 1947- |t Oligomorphic permutation groups. |d Cambridge ; New York : Cambridge University Press, 1990 |z 0521388368 |w (DLC) 91104659 |w (OCoLC)22158351 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 152. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552340 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10451941 | ||
938 | |a EBSCOhost |b EBSC |n 552340 | ||
938 | |a Internet Archive |b INAR |n oligomorphicperm0000came | ||
938 | |a YBP Library Services |b YANK |n 10407414 | ||
938 | |a YBP Library Services |b YANK |n 3276332 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836871705 |
---|---|
_version_ | 1816882228401012736 |
adam_text | |
any_adam_object | |
author | Cameron, Peter J. (Peter Jephson), 1947- |
author_GND | http://id.loc.gov/authorities/names/n81072709 |
author_facet | Cameron, Peter J. (Peter Jephson), 1947- |
author_role | |
author_sort | Cameron, Peter J. 1947- |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171 .C257 1990eb |
callnumber-search | QA171 .C257 1990eb |
callnumber-sort | QA 3171 C257 41990EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products 3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups 5.7 Orbits on infinite setsReferences; Index |
ctrlnum | (OCoLC)836871705 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04759cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836871705</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1990 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">YDX</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">INARC</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715168038</subfield><subfield code="a">1044561832</subfield><subfield code="a">1045417203</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361638</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110736163X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511549809</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511549806</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521388368</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521388368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836871705</subfield><subfield code="z">(OCoLC)715168038</subfield><subfield code="z">(OCoLC)1044561832</subfield><subfield code="z">(OCoLC)1045417203</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA171</subfield><subfield code="b">.C257 1990eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*20B07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03C60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield><subfield code="q">(Peter Jephson),</subfield><subfield code="d">1947-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81072709</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oligomorphic permutation groups /</subfield><subfield code="c">Peter J. Cameron.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1990.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 160 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">152</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 145-154) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7 Orbits on infinite setsReferences; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Permutation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099993</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de permutations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Permutatiegroepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes de permutations.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cameron, Peter J. (Peter Jephson), 1947-</subfield><subfield code="t">Oligomorphic permutation groups.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1990</subfield><subfield code="z">0521388368</subfield><subfield code="w">(DLC) 91104659</subfield><subfield code="w">(OCoLC)22158351</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">152.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552340</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10451941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552340</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">oligomorphicperm0000came</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407414</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3276332</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836871705 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361638 110736163X 9780511549809 0511549806 |
language | English |
oclc_num | 836871705 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 160 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Cameron, Peter J. (Peter Jephson), 1947- https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 http://id.loc.gov/authorities/names/n81072709 Oligomorphic permutation groups / Peter J. Cameron. Cambridge ; New York : Cambridge University Press, 1990. 1 online resource (viii, 160 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 152 Includes bibliographical references (pages 145-154) and index. Print version record. The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems. Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products 3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups 5.7 Orbits on infinite setsReferences; Index Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutatiegroepen. gtt Groupes de permutations. ram Print version: Cameron, Peter J. (Peter Jephson), 1947- Oligomorphic permutation groups. Cambridge ; New York : Cambridge University Press, 1990 0521388368 (DLC) 91104659 (OCoLC)22158351 London Mathematical Society lecture note series ; 152. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552340 Volltext |
spellingShingle | Cameron, Peter J. (Peter Jephson), 1947- Oligomorphic permutation groups / London Mathematical Society lecture note series ; Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products 3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups 5.7 Orbits on infinite setsReferences; Index Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutatiegroepen. gtt Groupes de permutations. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85099993 |
title | Oligomorphic permutation groups / |
title_auth | Oligomorphic permutation groups / |
title_exact_search | Oligomorphic permutation groups / |
title_full | Oligomorphic permutation groups / Peter J. Cameron. |
title_fullStr | Oligomorphic permutation groups / Peter J. Cameron. |
title_full_unstemmed | Oligomorphic permutation groups / Peter J. Cameron. |
title_short | Oligomorphic permutation groups / |
title_sort | oligomorphic permutation groups |
topic | Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutatiegroepen. gtt Groupes de permutations. ram |
topic_facet | Permutation groups. Groupes de permutations. MATHEMATICS Group Theory. Permutation groups Permutatiegroepen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552340 |
work_keys_str_mv | AT cameronpeterj oligomorphicpermutationgroups |