A mathematical introduction to string theory :: variational problems, geometric and probabilistic methods /
Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©1997.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
225. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume. |
Beschreibung: | 1 online resource (viii, 135 pages) |
Bibliographie: | Includes bibliographical references (pages 126-132) and index. |
ISBN: | 9781107362383 1107362385 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836871453 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1997 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d JBG |d OCLCQ |d VTS |d REC |d STF |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 797859449 | ||
020 | |a 9781107362383 |q (electronic bk.) | ||
020 | |a 1107362385 |q (electronic bk.) | ||
020 | |z 0521556104 | ||
020 | |z 9780521556101 | ||
020 | |z 9780511600791 | ||
035 | |a (OCoLC)836871453 |z (OCoLC)797859449 | ||
050 | 4 | |a QC794.6.S85 |b M38 1997eb | |
072 | 7 | |a SCI |x 051000 |2 bisacsh | |
082 | 7 | |a 539.7/2 |2 22 | |
084 | |a 31.29 |2 bcl | ||
049 | |a MAIN | ||
245 | 0 | 2 | |a A mathematical introduction to string theory : |b variational problems, geometric and probabilistic methods / |c Sergio Albeverio [and others]. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©1997. | ||
300 | |a 1 online resource (viii, 135 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 225 | |
504 | |a Includes bibliographical references (pages 126-132) and index. | ||
505 | 0 | |a I.0. Introduction -- I.1. The two-dimensional Plateau problem -- I.2. Topological and metric structures on the space of mappings and metrics -- Appendix to I.2. ILH-structures -- I.3. Harmonic maps and global structures -- I.4. Cauchy-Riemann operators -- I.5. Zeta-function and heat-kernel determinants of an operator -- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case -- I.7. Determinant bundles -- I.8. Chern classes of determinant bundles -- I.9. Gaussian measures and random fields -- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface -- I.11. Small time asymptotics for heat-kernel regularized determinants -- II. 1. Quantization by functional integrals -- II. 2. The Polyakov measure -- II. 3. Formal Lebesgue measures on Hilbert spaces -- II. 4. The Gaussian integration on the space of embeddings. | |
588 | 0 | |a Print version record. | |
520 | |a Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume. | ||
650 | 0 | |a String models |x Mathematics. | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Nuclear. |2 bisacsh | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a String models |x Mathematics |2 fast | |
650 | 1 | 7 | |a Snaartheorie. |2 gtt |
650 | 7 | |a Modèles des cordes vibrantes (Physique nucléaire) |2 ram | |
650 | 7 | |a Physique mathématique. |2 ram | |
700 | 1 | |a Albeverio, Sergio. | |
710 | 2 | |a London Mathematical Society. |0 http://id.loc.gov/authorities/names/n79118957 | |
776 | 0 | 8 | |i Print version: |t Mathematical introduction to string theory. |d Cambridge ; New York : Cambridge University Press, ©1997 |z 0521556104 |w (DLC) 95049052 |w (OCoLC)33667247 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 225. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552526 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13426164 | ||
938 | |a ebrary |b EBRY |n ebr10560888 | ||
938 | |a EBSCOhost |b EBSC |n 552526 | ||
938 | |a YBP Library Services |b YANK |n 10405658 | ||
938 | |a YBP Library Services |b YANK |n 10370382 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836871453 |
---|---|
_version_ | 1816882228367458304 |
adam_text | |
any_adam_object | |
author2 | Albeverio, Sergio |
author2_role | |
author2_variant | s a sa |
author_corporate | London Mathematical Society |
author_corporate_role | |
author_facet | Albeverio, Sergio London Mathematical Society |
author_sort | Albeverio, Sergio |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC794 |
callnumber-raw | QC794.6.S85 M38 1997eb |
callnumber-search | QC794.6.S85 M38 1997eb |
callnumber-sort | QC 3794.6 S85 M38 41997EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | I.0. Introduction -- I.1. The two-dimensional Plateau problem -- I.2. Topological and metric structures on the space of mappings and metrics -- Appendix to I.2. ILH-structures -- I.3. Harmonic maps and global structures -- I.4. Cauchy-Riemann operators -- I.5. Zeta-function and heat-kernel determinants of an operator -- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case -- I.7. Determinant bundles -- I.8. Chern classes of determinant bundles -- I.9. Gaussian measures and random fields -- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface -- I.11. Small time asymptotics for heat-kernel regularized determinants -- II. 1. Quantization by functional integrals -- II. 2. The Polyakov measure -- II. 3. Formal Lebesgue measures on Hilbert spaces -- II. 4. The Gaussian integration on the space of embeddings. |
ctrlnum | (OCoLC)836871453 |
dewey-full | 539.7/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.7/2 |
dewey-search | 539.7/2 |
dewey-sort | 3539.7 12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04427cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836871453</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1997 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797859449</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362383</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362385</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521556104</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521556101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511600791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836871453</subfield><subfield code="z">(OCoLC)797859449</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC794.6.S85</subfield><subfield code="b">M38 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">051000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">539.7/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.29</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="2"><subfield code="a">A mathematical introduction to string theory :</subfield><subfield code="b">variational problems, geometric and probabilistic methods /</subfield><subfield code="c">Sergio Albeverio [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 135 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">225</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 126-132) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I.0. Introduction -- I.1. The two-dimensional Plateau problem -- I.2. Topological and metric structures on the space of mappings and metrics -- Appendix to I.2. ILH-structures -- I.3. Harmonic maps and global structures -- I.4. Cauchy-Riemann operators -- I.5. Zeta-function and heat-kernel determinants of an operator -- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case -- I.7. Determinant bundles -- I.8. Chern classes of determinant bundles -- I.9. Gaussian measures and random fields -- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface -- I.11. Small time asymptotics for heat-kernel regularized determinants -- II. 1. Quantization by functional integrals -- II. 2. The Polyakov measure -- II. 3. Formal Lebesgue measures on Hilbert spaces -- II. 4. The Gaussian integration on the space of embeddings.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">String models</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Nuclear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">String models</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Snaartheorie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèles des cordes vibrantes (Physique nucléaire)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albeverio, Sergio.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79118957</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Mathematical introduction to string theory.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©1997</subfield><subfield code="z">0521556104</subfield><subfield code="w">(DLC) 95049052</subfield><subfield code="w">(OCoLC)33667247</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">225.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552526</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13426164</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10560888</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552526</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405658</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370382</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836871453 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n79118957 |
isbn | 9781107362383 1107362385 |
language | English |
oclc_num | 836871453 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 135 pages) |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / Sergio Albeverio [and others]. Cambridge ; New York : Cambridge University Press, ©1997. 1 online resource (viii, 135 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 225 Includes bibliographical references (pages 126-132) and index. I.0. Introduction -- I.1. The two-dimensional Plateau problem -- I.2. Topological and metric structures on the space of mappings and metrics -- Appendix to I.2. ILH-structures -- I.3. Harmonic maps and global structures -- I.4. Cauchy-Riemann operators -- I.5. Zeta-function and heat-kernel determinants of an operator -- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case -- I.7. Determinant bundles -- I.8. Chern classes of determinant bundles -- I.9. Gaussian measures and random fields -- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface -- I.11. Small time asymptotics for heat-kernel regularized determinants -- II. 1. Quantization by functional integrals -- II. 2. The Polyakov measure -- II. 3. Formal Lebesgue measures on Hilbert spaces -- II. 4. The Gaussian integration on the space of embeddings. Print version record. Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to the method used. The representation theory of Lie, Kac-Moody and Virasoro algebras have been used for such quantization. In this lecture note the authors give an introduction to certain global analytic and probabilistic aspects of string theory. It is their intention to bring together, and make explicit the necessary mathematical tools. Researchers with an interest in string theory, in either mathematics or theoretical physics, will find this a stimulating volume. String models Mathematics. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Nuclear. bisacsh Mathematical physics fast String models Mathematics fast Snaartheorie. gtt Modèles des cordes vibrantes (Physique nucléaire) ram Physique mathématique. ram Albeverio, Sergio. London Mathematical Society. http://id.loc.gov/authorities/names/n79118957 Print version: Mathematical introduction to string theory. Cambridge ; New York : Cambridge University Press, ©1997 0521556104 (DLC) 95049052 (OCoLC)33667247 London Mathematical Society lecture note series ; 225. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552526 Volltext |
spellingShingle | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / London Mathematical Society lecture note series ; I.0. Introduction -- I.1. The two-dimensional Plateau problem -- I.2. Topological and metric structures on the space of mappings and metrics -- Appendix to I.2. ILH-structures -- I.3. Harmonic maps and global structures -- I.4. Cauchy-Riemann operators -- I.5. Zeta-function and heat-kernel determinants of an operator -- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case -- I.7. Determinant bundles -- I.8. Chern classes of determinant bundles -- I.9. Gaussian measures and random fields -- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface -- I.11. Small time asymptotics for heat-kernel regularized determinants -- II. 1. Quantization by functional integrals -- II. 2. The Polyakov measure -- II. 3. Formal Lebesgue measures on Hilbert spaces -- II. 4. The Gaussian integration on the space of embeddings. String models Mathematics. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Nuclear. bisacsh Mathematical physics fast String models Mathematics fast Snaartheorie. gtt Modèles des cordes vibrantes (Physique nucléaire) ram Physique mathématique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082129 |
title | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / |
title_auth | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / |
title_exact_search | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / |
title_full | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / Sergio Albeverio [and others]. |
title_fullStr | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / Sergio Albeverio [and others]. |
title_full_unstemmed | A mathematical introduction to string theory : variational problems, geometric and probabilistic methods / Sergio Albeverio [and others]. |
title_short | A mathematical introduction to string theory : |
title_sort | mathematical introduction to string theory variational problems geometric and probabilistic methods |
title_sub | variational problems, geometric and probabilistic methods / |
topic | String models Mathematics. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Nuclear. bisacsh Mathematical physics fast String models Mathematics fast Snaartheorie. gtt Modèles des cordes vibrantes (Physique nucléaire) ram Physique mathématique. ram |
topic_facet | String models Mathematics. Mathematical physics. Physique mathématique. SCIENCE Physics Nuclear. Mathematical physics String models Mathematics Snaartheorie. Modèles des cordes vibrantes (Physique nucléaire) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552526 |
work_keys_str_mv | AT albeveriosergio amathematicalintroductiontostringtheoryvariationalproblemsgeometricandprobabilisticmethods AT londonmathematicalsociety amathematicalintroductiontostringtheoryvariationalproblemsgeometricandprobabilisticmethods AT albeveriosergio mathematicalintroductiontostringtheoryvariationalproblemsgeometricandprobabilisticmethods AT londonmathematicalsociety mathematicalintroductiontostringtheoryvariationalproblemsgeometricandprobabilisticmethods |