Lower K- and L-theory /:
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York, NY, USA :
Cambridge University Press,
1992.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
178. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra. |
Beschreibung: | 1 online resource (174 pages) |
Bibliographie: | Includes bibliographical references (pages 167-171) and index. |
ISBN: | 9781107361904 1107361907 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836871198 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1992 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d SFB |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCLCL |d OCLCQ | ||
019 | |a 708568508 | ||
020 | |a 9781107361904 |q (electronic bk.) | ||
020 | |a 1107361907 |q (electronic bk.) | ||
020 | |z 0521438012 | ||
020 | |z 9780521438018 | ||
035 | |a (OCoLC)836871198 |z (OCoLC)708568508 | ||
050 | 4 | |a QA612.33 |b .R46 1992eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.23 |2 22 | |
084 | |a 31.61 |2 bcl | ||
084 | |a PA 54 |2 blsrissc | ||
084 | |a PC 87 |2 blsrissc | ||
084 | |a *57-02 |2 msc | ||
084 | |a 19-02 |2 msc | ||
084 | |a 19Jxx |2 msc | ||
084 | |a 57R67 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Ranicki, Andrew, |d 1948- |1 https://id.oclc.org/worldcat/entity/E39PBJjdjXFyFywdfd8pRymGHC |0 http://id.loc.gov/authorities/names/n80082764 | |
245 | 1 | 0 | |a Lower K- and L-theory / |c Andrew Ranicki. |
260 | |a Cambridge [England] ; |a New York, NY, USA : |b Cambridge University Press, |c 1992. | ||
300 | |a 1 online resource (174 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 178 | |
504 | |a Includes bibliographical references (pages 167-171) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra. | ||
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory | |
505 | 8 | |a 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index | |
650 | 0 | |a K-theory. |0 http://id.loc.gov/authorities/subjects/sh85071200 | |
650 | 6 | |a K-théorie. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a K-theory |2 fast | |
650 | 7 | |a K-Théorie. |2 ram | |
740 | 0 | |a L-theory. | |
776 | 0 | 8 | |i Print version: |a Ranicki, Andrew, 1948- |t Lower K- and L-theory. |d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992 |z 0521438012 |w (DLC) 92193401 |w (OCoLC)26505138 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 178. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493 |3 Volltext |
938 | |a Internet Archive |b INAR |n lowerkltheory0000rani | ||
938 | |a ebrary |b EBRY |n ebr10447378 | ||
938 | |a EBSCOhost |b EBSC |n 552493 | ||
938 | |a YBP Library Services |b YANK |n 10405619 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836871198 |
---|---|
_version_ | 1816882228349632512 |
adam_text | |
any_adam_object | |
author | Ranicki, Andrew, 1948- |
author_GND | http://id.loc.gov/authorities/names/n80082764 |
author_facet | Ranicki, Andrew, 1948- |
author_role | |
author_sort | Ranicki, Andrew, 1948- |
author_variant | a r ar |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.33 .R46 1992eb |
callnumber-search | QA612.33 .R46 1992eb |
callnumber-sort | QA 3612.33 R46 41992EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index |
ctrlnum | (OCoLC)836871198 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04019cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836871198</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1992 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708568508</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361904</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361907</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521438012</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521438018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836871198</subfield><subfield code="z">(OCoLC)708568508</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.33</subfield><subfield code="b">.R46 1992eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PA 54</subfield><subfield code="2">blsrissc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PC 87</subfield><subfield code="2">blsrissc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*57-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57R67</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ranicki, Andrew,</subfield><subfield code="d">1948-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjdjXFyFywdfd8pRymGHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80082764</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lower K- and L-theory /</subfield><subfield code="c">Andrew Ranicki.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York, NY, USA :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1992.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (174 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">178</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 167-171) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">K-theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85071200</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">K-théorie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">K-theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">K-Théorie.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="740" ind1="0" ind2=" "><subfield code="a">L-theory.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ranicki, Andrew, 1948-</subfield><subfield code="t">Lower K- and L-theory.</subfield><subfield code="d">Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992</subfield><subfield code="z">0521438012</subfield><subfield code="w">(DLC) 92193401</subfield><subfield code="w">(OCoLC)26505138</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">178.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">lowerkltheory0000rani</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10447378</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552493</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405619</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836871198 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361904 1107361907 |
language | English |
oclc_num | 836871198 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (174 pages) |
psigel | ZDB-4-EBA |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Ranicki, Andrew, 1948- https://id.oclc.org/worldcat/entity/E39PBJjdjXFyFywdfd8pRymGHC http://id.loc.gov/authorities/names/n80082764 Lower K- and L-theory / Andrew Ranicki. Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992. 1 online resource (174 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 178 Includes bibliographical references (pages 167-171) and index. Print version record. This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra. Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index K-theory. http://id.loc.gov/authorities/subjects/sh85071200 K-théorie. MATHEMATICS Topology. bisacsh K-theory fast K-Théorie. ram L-theory. Print version: Ranicki, Andrew, 1948- Lower K- and L-theory. Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992 0521438012 (DLC) 92193401 (OCoLC)26505138 London Mathematical Society lecture note series ; 178. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493 Volltext |
spellingShingle | Ranicki, Andrew, 1948- Lower K- and L-theory / London Mathematical Society lecture note series ; Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index K-theory. http://id.loc.gov/authorities/subjects/sh85071200 K-théorie. MATHEMATICS Topology. bisacsh K-theory fast K-Théorie. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85071200 |
title | Lower K- and L-theory / |
title_alt | L-theory. |
title_auth | Lower K- and L-theory / |
title_exact_search | Lower K- and L-theory / |
title_full | Lower K- and L-theory / Andrew Ranicki. |
title_fullStr | Lower K- and L-theory / Andrew Ranicki. |
title_full_unstemmed | Lower K- and L-theory / Andrew Ranicki. |
title_short | Lower K- and L-theory / |
title_sort | lower k and l theory |
topic | K-theory. http://id.loc.gov/authorities/subjects/sh85071200 K-théorie. MATHEMATICS Topology. bisacsh K-theory fast K-Théorie. ram |
topic_facet | K-theory. K-théorie. MATHEMATICS Topology. K-theory K-Théorie. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493 |
work_keys_str_mv | AT ranickiandrew lowerkandltheory |