Gröbner bases and applications /:
This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases.
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K. ; New York :
Cambridge University Press,
1998.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
251. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases. |
Beschreibung: | Papers from an intensive course for researchers (Jan. 1998) and a conference "33 Years of Gröbner Bases" held at RISC-Linz, Feb. 2-4, 1998. |
Beschreibung: | 1 online resource (viii, 552 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781107362697 1107362695 9780511565847 0511565844 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836870790 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1998 enka ob 001 0 eng d | ||
010 | |z 97044181 | ||
040 | |a N$T |b eng |e pn |c N$T |d UIU |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d OCLCQ |d AJS |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d INARC |d OCLCQ | ||
019 | |a 779409454 |a 1424691980 | ||
020 | |a 9781107362697 |q (electronic bk.) | ||
020 | |a 1107362695 |q (electronic bk.) | ||
020 | |a 9780511565847 |q (electronic bk.) | ||
020 | |a 0511565844 |q (electronic bk.) | ||
020 | |z 0521632986 | ||
020 | |z 9780521632980 | ||
035 | |a (OCoLC)836870790 |z (OCoLC)779409454 |z (OCoLC)1424691980 | ||
050 | 4 | |a QA251.3 |b .G76 1998eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.24 |2 22 | |
084 | |a 31.23 |2 bcl | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Gröbner bases and applications / |c edited by B. Buchberger & F. Winkler. |
260 | |a Cambridge, U.K. ; |a New York : |b Cambridge University Press, |c 1998. | ||
300 | |a 1 online resource (viii, 552 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 251 | |
500 | |a Papers from an intensive course for researchers (Jan. 1998) and a conference "33 Years of Gröbner Bases" held at RISC-Linz, Feb. 2-4, 1998. | ||
504 | |a Includes bibliographical references and index. | ||
520 | 8 | |a This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases. | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials) | |
505 | 8 | |a Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases) | |
505 | 8 | |a Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction | |
505 | 8 | |a 1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities | |
505 | 8 | |a 2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity? | |
650 | 0 | |a Gröbner bases. |0 http://id.loc.gov/authorities/subjects/sh92005856 | |
650 | 6 | |a Bases de Gröbner. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Gröbner bases |2 fast | |
650 | 1 | 7 | |a Commutatieve algebra's. |2 gtt |
650 | 7 | |a Gröbner, Bases de. |2 ram | |
700 | 1 | |a Buchberger, Bruno. | |
700 | 1 | |a Winkler, Franz, |d 1955- |1 https://id.oclc.org/worldcat/entity/E39PBJvXk98BYCTj3pd6Wfp3wC |0 http://id.loc.gov/authorities/names/n97118345 | |
776 | 0 | 8 | |i Print version: |t Gröbner bases and applications. |d Cambridge, U.K. ; New York : Cambridge University Press, 1998 |z 0521632986 |w (DLC) 97044181 |w (OCoLC)38042878 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 251. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552422 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10560876 | ||
938 | |a EBSCOhost |b EBSC |n 552422 | ||
938 | |a YBP Library Services |b YANK |n 6967369 | ||
938 | |a YBP Library Services |b YANK |n 10370358 | ||
938 | |a YBP Library Services |b YANK |n 10405687 | ||
938 | |a YBP Library Services |b YANK |n 10666583 | ||
938 | |a Internet Archive |b INAR |n isbn_9780521632980 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836870790 |
---|---|
_version_ | 1816882228402061312 |
adam_text | |
any_adam_object | |
author2 | Buchberger, Bruno Winkler, Franz, 1955- |
author2_role | |
author2_variant | b b bb f w fw |
author_GND | http://id.loc.gov/authorities/names/n97118345 |
author_facet | Buchberger, Bruno Winkler, Franz, 1955- |
author_sort | Buchberger, Bruno |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 .G76 1998eb |
callnumber-search | QA251.3 .G76 1998eb |
callnumber-sort | QA 3251.3 G76 41998EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials) Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases) Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction 1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities 2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity? |
ctrlnum | (OCoLC)836870790 |
dewey-full | 512/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.24 |
dewey-search | 512/.24 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06053cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836870790</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1998 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 97044181 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">779409454</subfield><subfield code="a">1424691980</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362697</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362695</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565847</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511565844</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521632986</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521632980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836870790</subfield><subfield code="z">(OCoLC)779409454</subfield><subfield code="z">(OCoLC)1424691980</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA251.3</subfield><subfield code="b">.G76 1998eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Gröbner bases and applications /</subfield><subfield code="c">edited by B. Buchberger & F. Winkler.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, U.K. ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1998.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 552 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">251</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Papers from an intensive course for researchers (Jan. 1998) and a conference "33 Years of Gröbner Bases" held at RISC-Linz, Feb. 2-4, 1998.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity?</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gröbner bases.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92005856</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bases de Gröbner.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gröbner bases</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Commutatieve algebra's.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gröbner, Bases de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buchberger, Bruno.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winkler, Franz,</subfield><subfield code="d">1955-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvXk98BYCTj3pd6Wfp3wC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97118345</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Gröbner bases and applications.</subfield><subfield code="d">Cambridge, U.K. ; New York : Cambridge University Press, 1998</subfield><subfield code="z">0521632986</subfield><subfield code="w">(DLC) 97044181</subfield><subfield code="w">(OCoLC)38042878</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">251.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552422</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10560876</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552422</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6967369</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370358</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405687</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10666583</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">isbn_9780521632980</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836870790 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107362697 1107362695 9780511565847 0511565844 |
language | English |
oclc_num | 836870790 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 552 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Gröbner bases and applications / edited by B. Buchberger & F. Winkler. Cambridge, U.K. ; New York : Cambridge University Press, 1998. 1 online resource (viii, 552 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 251 Papers from an intensive course for researchers (Jan. 1998) and a conference "33 Years of Gröbner Bases" held at RISC-Linz, Feb. 2-4, 1998. Includes bibliographical references and index. This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases. Print version record. Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials) Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases) Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction 1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities 2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity? Gröbner bases. http://id.loc.gov/authorities/subjects/sh92005856 Bases de Gröbner. MATHEMATICS Group Theory. bisacsh Gröbner bases fast Commutatieve algebra's. gtt Gröbner, Bases de. ram Buchberger, Bruno. Winkler, Franz, 1955- https://id.oclc.org/worldcat/entity/E39PBJvXk98BYCTj3pd6Wfp3wC http://id.loc.gov/authorities/names/n97118345 Print version: Gröbner bases and applications. Cambridge, U.K. ; New York : Cambridge University Press, 1998 0521632986 (DLC) 97044181 (OCoLC)38042878 London Mathematical Society lecture note series ; 251. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552422 Volltext |
spellingShingle | Gröbner bases and applications / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials) Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases) Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction 1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities 2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity? Gröbner bases. http://id.loc.gov/authorities/subjects/sh92005856 Bases de Gröbner. MATHEMATICS Group Theory. bisacsh Gröbner bases fast Commutatieve algebra's. gtt Gröbner, Bases de. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh92005856 |
title | Gröbner bases and applications / |
title_auth | Gröbner bases and applications / |
title_exact_search | Gröbner bases and applications / |
title_full | Gröbner bases and applications / edited by B. Buchberger & F. Winkler. |
title_fullStr | Gröbner bases and applications / edited by B. Buchberger & F. Winkler. |
title_full_unstemmed | Gröbner bases and applications / edited by B. Buchberger & F. Winkler. |
title_short | Gröbner bases and applications / |
title_sort | grobner bases and applications |
topic | Gröbner bases. http://id.loc.gov/authorities/subjects/sh92005856 Bases de Gröbner. MATHEMATICS Group Theory. bisacsh Gröbner bases fast Commutatieve algebra's. gtt Gröbner, Bases de. ram |
topic_facet | Gröbner bases. Bases de Gröbner. MATHEMATICS Group Theory. Gröbner bases Commutatieve algebra's. Gröbner, Bases de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552422 |
work_keys_str_mv | AT buchbergerbruno grobnerbasesandapplications AT winklerfranz grobnerbasesandapplications |