Introduction to subfactors /:
Subfactors have been a subject of considerable research activity for about fifteen years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has o...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
1997.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
234. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Subfactors have been a subject of considerable research activity for about fifteen years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late chapter. |
Beschreibung: | 1 online resource (xii, 162 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 151-155) and index. |
ISBN: | 9781107362505 1107362504 9780511566219 0511566212 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836870342 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1997 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d JBG |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 715168981 | ||
020 | |a 9781107362505 |q (electronic bk.) | ||
020 | |a 1107362504 |q (electronic bk.) | ||
020 | |a 9780511566219 |q (e-book) | ||
020 | |a 0511566212 |q (e-book) | ||
020 | |z 0521584205 | ||
020 | |z 9780521584203 | ||
035 | |a (OCoLC)836870342 |z (OCoLC)715168981 | ||
050 | 4 | |a QA326 |b .J66 1997eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 22 | |
084 | |a 31.45 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Jones, Vaughan F. R., |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PBJfMhWw8PpJcKX8DWh8DMP |0 http://id.loc.gov/authorities/names/n80114917 | |
245 | 1 | 0 | |a Introduction to subfactors / |c V. Jones, V.S. Sunder. |
260 | |a New York : |b Cambridge University Press, |c 1997. | ||
300 | |a 1 online resource (xii, 162 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 234 | |
504 | |a Includes bibliographical references (pages 151-155) and index. | ||
505 | 0 | 0 | |g 1. |t Factors -- |g 2. |t Subfactors and index -- |g 3. |t Some basic facts -- |g 4. |t The principal and dual graphs -- |g 5. |t Commuting squares -- |g 6. |t Vertex and spin models -- |g App. A.1. |t Concrete and abstract von Neumann algebras -- |g App. A.2. |t Separable pre-duals, Tomita Takesaki theorem -- |g App. A.3. |t Simplicity of factors -- |g App. A.4. |t Subgroups and subfactors -- |g App. A.5. |t From subfactors to knots. |
588 | 0 | |a Print version record. | |
520 | |a Subfactors have been a subject of considerable research activity for about fifteen years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late chapter. | ||
650 | 0 | |a Operator algebras. |0 http://id.loc.gov/authorities/subjects/sh85095022 | |
650 | 6 | |a Algèbres d'opérateurs. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Operator algebras |2 fast | |
650 | 1 | 7 | |a Operatorenvergelijkingen. |2 gtt |
650 | 7 | |a Álgebras de von neumann. |2 larpcal | |
650 | 7 | |a Análise funcional. |2 larpcal | |
650 | 7 | |a Algèbres d'opérateurs. |2 ram | |
700 | 1 | |a Sunder, V. S. | |
776 | 0 | 8 | |i Print version: |a Jones, Vaughan F.R., 1952- |t Introduction to subfactors. |d New York : Cambridge University Press, 1997 |z 0521584205 |w (DLC) 96052449 |w (OCoLC)36127003 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 234. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552474 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10452050 | ||
938 | |a EBSCOhost |b EBSC |n 552474 | ||
938 | |a YBP Library Services |b YANK |n 10370393 | ||
938 | |a YBP Library Services |b YANK |n 10405669 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836870342 |
---|---|
_version_ | 1816882228359069696 |
adam_text | |
any_adam_object | |
author | Jones, Vaughan F. R., 1952- |
author2 | Sunder, V. S. |
author2_role | |
author2_variant | v s s vs vss |
author_GND | http://id.loc.gov/authorities/names/n80114917 |
author_facet | Jones, Vaughan F. R., 1952- Sunder, V. S. |
author_role | |
author_sort | Jones, Vaughan F. R., 1952- |
author_variant | v f r j vfr vfrj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA326 |
callnumber-raw | QA326 .J66 1997eb |
callnumber-search | QA326 .J66 1997eb |
callnumber-sort | QA 3326 J66 41997EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Factors -- Subfactors and index -- Some basic facts -- The principal and dual graphs -- Commuting squares -- Vertex and spin models -- Concrete and abstract von Neumann algebras -- Separable pre-duals, Tomita Takesaki theorem -- Simplicity of factors -- Subgroups and subfactors -- From subfactors to knots. |
ctrlnum | (OCoLC)836870342 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03397cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836870342</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1997 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715168981</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362505</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362504</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511566219</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511566212</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521584205</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521584203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836870342</subfield><subfield code="z">(OCoLC)715168981</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA326</subfield><subfield code="b">.J66 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, Vaughan F. R.,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfMhWw8PpJcKX8DWh8DMP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80114917</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to subfactors /</subfield><subfield code="c">V. Jones, V.S. Sunder.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 162 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">234</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 151-155) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Factors --</subfield><subfield code="g">2.</subfield><subfield code="t">Subfactors and index --</subfield><subfield code="g">3.</subfield><subfield code="t">Some basic facts --</subfield><subfield code="g">4.</subfield><subfield code="t">The principal and dual graphs --</subfield><subfield code="g">5.</subfield><subfield code="t">Commuting squares --</subfield><subfield code="g">6.</subfield><subfield code="t">Vertex and spin models --</subfield><subfield code="g">App. A.1.</subfield><subfield code="t">Concrete and abstract von Neumann algebras --</subfield><subfield code="g">App. A.2.</subfield><subfield code="t">Separable pre-duals, Tomita Takesaki theorem --</subfield><subfield code="g">App. A.3.</subfield><subfield code="t">Simplicity of factors --</subfield><subfield code="g">App. A.4.</subfield><subfield code="t">Subgroups and subfactors --</subfield><subfield code="g">App. A.5.</subfield><subfield code="t">From subfactors to knots.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Subfactors have been a subject of considerable research activity for about fifteen years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late chapter.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Operator algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85095022</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres d'opérateurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Operatorenvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebras de von neumann.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Análise funcional.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbres d'opérateurs.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sunder, V. S.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Jones, Vaughan F.R., 1952-</subfield><subfield code="t">Introduction to subfactors.</subfield><subfield code="d">New York : Cambridge University Press, 1997</subfield><subfield code="z">0521584205</subfield><subfield code="w">(DLC) 96052449</subfield><subfield code="w">(OCoLC)36127003</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">234.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552474</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10452050</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552474</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370393</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405669</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836870342 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107362505 1107362504 9780511566219 0511566212 |
language | English |
oclc_num | 836870342 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 162 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Jones, Vaughan F. R., 1952- https://id.oclc.org/worldcat/entity/E39PBJfMhWw8PpJcKX8DWh8DMP http://id.loc.gov/authorities/names/n80114917 Introduction to subfactors / V. Jones, V.S. Sunder. New York : Cambridge University Press, 1997. 1 online resource (xii, 162 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 234 Includes bibliographical references (pages 151-155) and index. 1. Factors -- 2. Subfactors and index -- 3. Some basic facts -- 4. The principal and dual graphs -- 5. Commuting squares -- 6. Vertex and spin models -- App. A.1. Concrete and abstract von Neumann algebras -- App. A.2. Separable pre-duals, Tomita Takesaki theorem -- App. A.3. Simplicity of factors -- App. A.4. Subgroups and subfactors -- App. A.5. From subfactors to knots. Print version record. Subfactors have been a subject of considerable research activity for about fifteen years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late chapter. Operator algebras. http://id.loc.gov/authorities/subjects/sh85095022 Algèbres d'opérateurs. MATHEMATICS Algebra Linear. bisacsh Operator algebras fast Operatorenvergelijkingen. gtt Álgebras de von neumann. larpcal Análise funcional. larpcal Algèbres d'opérateurs. ram Sunder, V. S. Print version: Jones, Vaughan F.R., 1952- Introduction to subfactors. New York : Cambridge University Press, 1997 0521584205 (DLC) 96052449 (OCoLC)36127003 London Mathematical Society lecture note series ; 234. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552474 Volltext |
spellingShingle | Jones, Vaughan F. R., 1952- Introduction to subfactors / London Mathematical Society lecture note series ; Factors -- Subfactors and index -- Some basic facts -- The principal and dual graphs -- Commuting squares -- Vertex and spin models -- Concrete and abstract von Neumann algebras -- Separable pre-duals, Tomita Takesaki theorem -- Simplicity of factors -- Subgroups and subfactors -- From subfactors to knots. Operator algebras. http://id.loc.gov/authorities/subjects/sh85095022 Algèbres d'opérateurs. MATHEMATICS Algebra Linear. bisacsh Operator algebras fast Operatorenvergelijkingen. gtt Álgebras de von neumann. larpcal Análise funcional. larpcal Algèbres d'opérateurs. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85095022 |
title | Introduction to subfactors / |
title_alt | Factors -- Subfactors and index -- Some basic facts -- The principal and dual graphs -- Commuting squares -- Vertex and spin models -- Concrete and abstract von Neumann algebras -- Separable pre-duals, Tomita Takesaki theorem -- Simplicity of factors -- Subgroups and subfactors -- From subfactors to knots. |
title_auth | Introduction to subfactors / |
title_exact_search | Introduction to subfactors / |
title_full | Introduction to subfactors / V. Jones, V.S. Sunder. |
title_fullStr | Introduction to subfactors / V. Jones, V.S. Sunder. |
title_full_unstemmed | Introduction to subfactors / V. Jones, V.S. Sunder. |
title_short | Introduction to subfactors / |
title_sort | introduction to subfactors |
topic | Operator algebras. http://id.loc.gov/authorities/subjects/sh85095022 Algèbres d'opérateurs. MATHEMATICS Algebra Linear. bisacsh Operator algebras fast Operatorenvergelijkingen. gtt Álgebras de von neumann. larpcal Análise funcional. larpcal Algèbres d'opérateurs. ram |
topic_facet | Operator algebras. Algèbres d'opérateurs. MATHEMATICS Algebra Linear. Operator algebras Operatorenvergelijkingen. Álgebras de von neumann. Análise funcional. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552474 |
work_keys_str_mv | AT jonesvaughanfr introductiontosubfactors AT sundervs introductiontosubfactors |