Polynomial invariants of finite groups /:
This is the first book to deal with invariant theory and the representations of finite groups. By restricting attention to finite groups Dr Benson is able to avoid recourse to the technical machinery of algebraic groups, and he develops the necessary results from commutative algebra as he proceeds....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©1993.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
190. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the first book to deal with invariant theory and the representations of finite groups. By restricting attention to finite groups Dr Benson is able to avoid recourse to the technical machinery of algebraic groups, and he develops the necessary results from commutative algebra as he proceeds. Thus the book should be accessible to graduate students. In detail, the book contains an account of invariant theory for the action of a finite group on the ring of polynomial functions on a linear representation, both in characteristic zero and characteristic p. Special attention is paid to the role played by pseudoreflections, which arise because they correspond to the divisors in the polynomial ring which ramify over the invariants. Also included is a new proof by Crawley-Boevey and the author of the Carlisle-Kropholler conjecture. This volume will appeal to all algebraists, but especially those working in representation theory, group theory, and commutative or homological algebra. |
Beschreibung: | 1 online resource (ix, 118 pages) |
Bibliographie: | Includes bibliographical references (pages 109-115) and index. |
ISBN: | 9781107362031 1107362032 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836870322 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1993 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d COO |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCO |d M8D |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 797839839 | ||
020 | |a 9781107362031 |q (electronic bk.) | ||
020 | |a 1107362032 |q (electronic bk.) | ||
020 | |z 0521458862 | ||
020 | |z 9780521458863 | ||
020 | |z 9780511565809 | ||
035 | |a (OCoLC)836870322 |z (OCoLC)797839839 | ||
050 | 4 | |a QA201 |b .B46 1993eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512./5 |2 22 | |
084 | |a 31.21 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Benson, D. J. |q (David J.), |d 1955- |1 https://id.oclc.org/worldcat/entity/E39PCjxmpGdK88yyHVGmkpqG73 |0 http://id.loc.gov/authorities/names/n90722466 | |
245 | 1 | 0 | |a Polynomial invariants of finite groups / |c D.J. Benson. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©1993. | ||
300 | |a 1 online resource (ix, 118 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 190 | |
504 | |a Includes bibliographical references (pages 109-115) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This is the first book to deal with invariant theory and the representations of finite groups. By restricting attention to finite groups Dr Benson is able to avoid recourse to the technical machinery of algebraic groups, and he develops the necessary results from commutative algebra as he proceeds. Thus the book should be accessible to graduate students. In detail, the book contains an account of invariant theory for the action of a finite group on the ring of polynomial functions on a linear representation, both in characteristic zero and characteristic p. Special attention is paid to the role played by pseudoreflections, which arise because they correspond to the divisors in the polynomial ring which ramify over the invariants. Also included is a new proof by Crawley-Boevey and the author of the Carlisle-Kropholler conjecture. This volume will appeal to all algebraists, but especially those working in representation theory, group theory, and commutative or homological algebra. | ||
505 | 0 | |a Cover; Title; Contents; Introduction; 1 Finite Generation of Invariants; 1.1 The basic object of study; 1.2 Noetherian rings and modules; 1.3 Finite groups in arbitrary characteristic; 1.4 Krull dimension and going up and down; 1.5 Noether's bound in characteristic zero; 1.6 Linearly reductive algebraic groups; 2 Poincare series; 2.1 The Hilbert-Serre theorem; 2.2 Noether normalization; 2.3 Systems of parameters; 2.4 Degree and if>; 2.5 Molien's theorem; 2.6 Reflecting hyperplanes; 3 Divisor Classes, Ramification and Hyperplanes; 3.1 Divisors; 3.2 Primes of height one; 3.3 Duality | |
505 | 8 | |a 3.4 Reflexive modules3.5 Divisor classes and unique factorization; 3.6 The Picard group; 3.7 The trace; 3.8 Ramification; 3.9 Cl(ii:[V]G); 3.10 The different; 3.11 The homological different; 3.12 A ramification formula; 3.13 The Carlisle-Kropholler conjecture; 4 Homological Properties of Invariants; 4.1 Minimal resolutions; 4.2 Hilbert's syzygy theorem; 4.3 Depth and Cohen-Macaulay rings; 4.4 Homological characterization of depth; 4.5 The canonical module and Gorenstein rings; 4.6 Watanabe's theorem; 5 Polynomial tensor exterior algebras; 5.1 Motivation and first properties | |
505 | 8 | |a 5.2 A variation on Molien's theorem5.3 The invariants are graded Gorenstein; 5.4 The Jacobian; 6 Polynomial rings and regular local rings; 6.1 Regular local rings; 6.2 Serre's converse to Hilbert's syzygy theorem; 6.3 Uniqueness of factorization; 6.4 Reflexive modules; 7 Groups Generated by Pseudoreflections; 7.1 Reflections and pseudoreflections; 7.2 The Shephard-Todd theorem; 7.3 A theorem of Solomon; 8 Modular invariants; 8.1 Dickson's theorem; 8.2 The special linear group; 8.3 Symplectic invariants; A Examples over the complex numbers; B Examples over finite fields; Bibliography; Index | |
650 | 0 | |a Invariants. |0 http://id.loc.gov/authorities/subjects/sh85067665 | |
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Divisor theory. |0 http://id.loc.gov/authorities/subjects/sh85038615 | |
650 | 6 | |a Invariants. | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Théorie des diviseurs. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Divisor theory |2 fast | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Invariants |2 fast | |
650 | 7 | |a Endliche Gruppe |2 gnd | |
650 | 7 | |a Invariante |2 gnd |0 http://d-nb.info/gnd/4128781-2 | |
650 | 7 | |a Invariantentheorie |2 gnd |0 http://d-nb.info/gnd/4162209-1 | |
650 | 1 | 7 | |a Eindige groepen. |2 gtt |
650 | 7 | |a Invariants. |2 ram | |
650 | 7 | |a Groupes finis. |2 ram | |
650 | 7 | |a Diviseurs, Théorie des. |2 ram | |
650 | 7 | |a Groupes de classes (Mathématiques) |2 ram | |
653 | 0 | |a Groups (Mathematics) | |
758 | |i has work: |a Polynomial invariants of finite groups (Work) |1 https://id.oclc.org/worldcat/entity/E39PCFFrGPk4VR4TxkPkD3PYT3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Benson, D.J. (David J.), 1955- |t Polynomial invariants of finite groups. |d Cambridge ; New York : Cambridge University Press, ©1993 |z 0521458862 |w (DLC) 94211280 |w (OCoLC)29409678 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 190. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552411 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10562300 | ||
938 | |a EBSCOhost |b EBSC |n 552411 | ||
938 | |a YBP Library Services |b YANK |n 10405630 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836870322 |
---|---|
_version_ | 1816882228351729664 |
adam_text | |
any_adam_object | |
author | Benson, D. J. (David J.), 1955- |
author_GND | http://id.loc.gov/authorities/names/n90722466 |
author_facet | Benson, D. J. (David J.), 1955- |
author_role | |
author_sort | Benson, D. J. 1955- |
author_variant | d j b dj djb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA201 |
callnumber-raw | QA201 .B46 1993eb |
callnumber-search | QA201 .B46 1993eb |
callnumber-sort | QA 3201 B46 41993EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Contents; Introduction; 1 Finite Generation of Invariants; 1.1 The basic object of study; 1.2 Noetherian rings and modules; 1.3 Finite groups in arbitrary characteristic; 1.4 Krull dimension and going up and down; 1.5 Noether's bound in characteristic zero; 1.6 Linearly reductive algebraic groups; 2 Poincare series; 2.1 The Hilbert-Serre theorem; 2.2 Noether normalization; 2.3 Systems of parameters; 2.4 Degree and if>; 2.5 Molien's theorem; 2.6 Reflecting hyperplanes; 3 Divisor Classes, Ramification and Hyperplanes; 3.1 Divisors; 3.2 Primes of height one; 3.3 Duality 3.4 Reflexive modules3.5 Divisor classes and unique factorization; 3.6 The Picard group; 3.7 The trace; 3.8 Ramification; 3.9 Cl(ii:[V]G); 3.10 The different; 3.11 The homological different; 3.12 A ramification formula; 3.13 The Carlisle-Kropholler conjecture; 4 Homological Properties of Invariants; 4.1 Minimal resolutions; 4.2 Hilbert's syzygy theorem; 4.3 Depth and Cohen-Macaulay rings; 4.4 Homological characterization of depth; 4.5 The canonical module and Gorenstein rings; 4.6 Watanabe's theorem; 5 Polynomial tensor exterior algebras; 5.1 Motivation and first properties 5.2 A variation on Molien's theorem5.3 The invariants are graded Gorenstein; 5.4 The Jacobian; 6 Polynomial rings and regular local rings; 6.1 Regular local rings; 6.2 Serre's converse to Hilbert's syzygy theorem; 6.3 Uniqueness of factorization; 6.4 Reflexive modules; 7 Groups Generated by Pseudoreflections; 7.1 Reflections and pseudoreflections; 7.2 The Shephard-Todd theorem; 7.3 A theorem of Solomon; 8 Modular invariants; 8.1 Dickson's theorem; 8.2 The special linear group; 8.3 Symplectic invariants; A Examples over the complex numbers; B Examples over finite fields; Bibliography; Index |
ctrlnum | (OCoLC)836870322 |
dewey-full | 512./5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512./5 |
dewey-search | 512./5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05996cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836870322</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1993 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797839839</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362031</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362032</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521458862</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521458863</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511565809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836870322</subfield><subfield code="z">(OCoLC)797839839</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA201</subfield><subfield code="b">.B46 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512./5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benson, D. J.</subfield><subfield code="q">(David J.),</subfield><subfield code="d">1955-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxmpGdK88yyHVGmkpqG73</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90722466</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polynomial invariants of finite groups /</subfield><subfield code="c">D.J. Benson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 118 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">190</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 109-115) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first book to deal with invariant theory and the representations of finite groups. By restricting attention to finite groups Dr Benson is able to avoid recourse to the technical machinery of algebraic groups, and he develops the necessary results from commutative algebra as he proceeds. Thus the book should be accessible to graduate students. In detail, the book contains an account of invariant theory for the action of a finite group on the ring of polynomial functions on a linear representation, both in characteristic zero and characteristic p. Special attention is paid to the role played by pseudoreflections, which arise because they correspond to the divisors in the polynomial ring which ramify over the invariants. Also included is a new proof by Crawley-Boevey and the author of the Carlisle-Kropholler conjecture. This volume will appeal to all algebraists, but especially those working in representation theory, group theory, and commutative or homological algebra.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Contents; Introduction; 1 Finite Generation of Invariants; 1.1 The basic object of study; 1.2 Noetherian rings and modules; 1.3 Finite groups in arbitrary characteristic; 1.4 Krull dimension and going up and down; 1.5 Noether's bound in characteristic zero; 1.6 Linearly reductive algebraic groups; 2 Poincare series; 2.1 The Hilbert-Serre theorem; 2.2 Noether normalization; 2.3 Systems of parameters; 2.4 Degree and if>; 2.5 Molien's theorem; 2.6 Reflecting hyperplanes; 3 Divisor Classes, Ramification and Hyperplanes; 3.1 Divisors; 3.2 Primes of height one; 3.3 Duality</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 Reflexive modules3.5 Divisor classes and unique factorization; 3.6 The Picard group; 3.7 The trace; 3.8 Ramification; 3.9 Cl(ii:[V]G); 3.10 The different; 3.11 The homological different; 3.12 A ramification formula; 3.13 The Carlisle-Kropholler conjecture; 4 Homological Properties of Invariants; 4.1 Minimal resolutions; 4.2 Hilbert's syzygy theorem; 4.3 Depth and Cohen-Macaulay rings; 4.4 Homological characterization of depth; 4.5 The canonical module and Gorenstein rings; 4.6 Watanabe's theorem; 5 Polynomial tensor exterior algebras; 5.1 Motivation and first properties</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 A variation on Molien's theorem5.3 The invariants are graded Gorenstein; 5.4 The Jacobian; 6 Polynomial rings and regular local rings; 6.1 Regular local rings; 6.2 Serre's converse to Hilbert's syzygy theorem; 6.3 Uniqueness of factorization; 6.4 Reflexive modules; 7 Groups Generated by Pseudoreflections; 7.1 Reflections and pseudoreflections; 7.2 The Shephard-Todd theorem; 7.3 A theorem of Solomon; 8 Modular invariants; 8.1 Dickson's theorem; 8.2 The special linear group; 8.3 Symplectic invariants; A Examples over the complex numbers; B Examples over finite fields; Bibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Invariants.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067665</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Divisor theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85038615</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariants.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des diviseurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Divisor theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariante</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128781-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4162209-1</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Eindige groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes finis.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diviseurs, Théorie des.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes de classes (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="653" ind1="0" ind2=" "><subfield code="a">Groups (Mathematics)</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Polynomial invariants of finite groups (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFFrGPk4VR4TxkPkD3PYT3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Benson, D.J. (David J.), 1955-</subfield><subfield code="t">Polynomial invariants of finite groups.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©1993</subfield><subfield code="z">0521458862</subfield><subfield code="w">(DLC) 94211280</subfield><subfield code="w">(OCoLC)29409678</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">190.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552411</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562300</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552411</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405630</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836870322 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107362031 1107362032 |
language | English |
oclc_num | 836870322 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 118 pages) |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Benson, D. J. (David J.), 1955- https://id.oclc.org/worldcat/entity/E39PCjxmpGdK88yyHVGmkpqG73 http://id.loc.gov/authorities/names/n90722466 Polynomial invariants of finite groups / D.J. Benson. Cambridge ; New York : Cambridge University Press, ©1993. 1 online resource (ix, 118 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 190 Includes bibliographical references (pages 109-115) and index. Print version record. This is the first book to deal with invariant theory and the representations of finite groups. By restricting attention to finite groups Dr Benson is able to avoid recourse to the technical machinery of algebraic groups, and he develops the necessary results from commutative algebra as he proceeds. Thus the book should be accessible to graduate students. In detail, the book contains an account of invariant theory for the action of a finite group on the ring of polynomial functions on a linear representation, both in characteristic zero and characteristic p. Special attention is paid to the role played by pseudoreflections, which arise because they correspond to the divisors in the polynomial ring which ramify over the invariants. Also included is a new proof by Crawley-Boevey and the author of the Carlisle-Kropholler conjecture. This volume will appeal to all algebraists, but especially those working in representation theory, group theory, and commutative or homological algebra. Cover; Title; Contents; Introduction; 1 Finite Generation of Invariants; 1.1 The basic object of study; 1.2 Noetherian rings and modules; 1.3 Finite groups in arbitrary characteristic; 1.4 Krull dimension and going up and down; 1.5 Noether's bound in characteristic zero; 1.6 Linearly reductive algebraic groups; 2 Poincare series; 2.1 The Hilbert-Serre theorem; 2.2 Noether normalization; 2.3 Systems of parameters; 2.4 Degree and if>; 2.5 Molien's theorem; 2.6 Reflecting hyperplanes; 3 Divisor Classes, Ramification and Hyperplanes; 3.1 Divisors; 3.2 Primes of height one; 3.3 Duality 3.4 Reflexive modules3.5 Divisor classes and unique factorization; 3.6 The Picard group; 3.7 The trace; 3.8 Ramification; 3.9 Cl(ii:[V]G); 3.10 The different; 3.11 The homological different; 3.12 A ramification formula; 3.13 The Carlisle-Kropholler conjecture; 4 Homological Properties of Invariants; 4.1 Minimal resolutions; 4.2 Hilbert's syzygy theorem; 4.3 Depth and Cohen-Macaulay rings; 4.4 Homological characterization of depth; 4.5 The canonical module and Gorenstein rings; 4.6 Watanabe's theorem; 5 Polynomial tensor exterior algebras; 5.1 Motivation and first properties 5.2 A variation on Molien's theorem5.3 The invariants are graded Gorenstein; 5.4 The Jacobian; 6 Polynomial rings and regular local rings; 6.1 Regular local rings; 6.2 Serre's converse to Hilbert's syzygy theorem; 6.3 Uniqueness of factorization; 6.4 Reflexive modules; 7 Groups Generated by Pseudoreflections; 7.1 Reflections and pseudoreflections; 7.2 The Shephard-Todd theorem; 7.3 A theorem of Solomon; 8 Modular invariants; 8.1 Dickson's theorem; 8.2 The special linear group; 8.3 Symplectic invariants; A Examples over the complex numbers; B Examples over finite fields; Bibliography; Index Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Divisor theory. http://id.loc.gov/authorities/subjects/sh85038615 Invariants. Groupes finis. Théorie des diviseurs. MATHEMATICS Algebra Linear. bisacsh Divisor theory fast Finite groups fast Invariants fast Endliche Gruppe gnd Invariante gnd http://d-nb.info/gnd/4128781-2 Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 Eindige groepen. gtt Invariants. ram Groupes finis. ram Diviseurs, Théorie des. ram Groupes de classes (Mathématiques) ram Groups (Mathematics) has work: Polynomial invariants of finite groups (Work) https://id.oclc.org/worldcat/entity/E39PCFFrGPk4VR4TxkPkD3PYT3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Benson, D.J. (David J.), 1955- Polynomial invariants of finite groups. Cambridge ; New York : Cambridge University Press, ©1993 0521458862 (DLC) 94211280 (OCoLC)29409678 London Mathematical Society lecture note series ; 190. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552411 Volltext |
spellingShingle | Benson, D. J. (David J.), 1955- Polynomial invariants of finite groups / London Mathematical Society lecture note series ; Cover; Title; Contents; Introduction; 1 Finite Generation of Invariants; 1.1 The basic object of study; 1.2 Noetherian rings and modules; 1.3 Finite groups in arbitrary characteristic; 1.4 Krull dimension and going up and down; 1.5 Noether's bound in characteristic zero; 1.6 Linearly reductive algebraic groups; 2 Poincare series; 2.1 The Hilbert-Serre theorem; 2.2 Noether normalization; 2.3 Systems of parameters; 2.4 Degree and if>; 2.5 Molien's theorem; 2.6 Reflecting hyperplanes; 3 Divisor Classes, Ramification and Hyperplanes; 3.1 Divisors; 3.2 Primes of height one; 3.3 Duality 3.4 Reflexive modules3.5 Divisor classes and unique factorization; 3.6 The Picard group; 3.7 The trace; 3.8 Ramification; 3.9 Cl(ii:[V]G); 3.10 The different; 3.11 The homological different; 3.12 A ramification formula; 3.13 The Carlisle-Kropholler conjecture; 4 Homological Properties of Invariants; 4.1 Minimal resolutions; 4.2 Hilbert's syzygy theorem; 4.3 Depth and Cohen-Macaulay rings; 4.4 Homological characterization of depth; 4.5 The canonical module and Gorenstein rings; 4.6 Watanabe's theorem; 5 Polynomial tensor exterior algebras; 5.1 Motivation and first properties 5.2 A variation on Molien's theorem5.3 The invariants are graded Gorenstein; 5.4 The Jacobian; 6 Polynomial rings and regular local rings; 6.1 Regular local rings; 6.2 Serre's converse to Hilbert's syzygy theorem; 6.3 Uniqueness of factorization; 6.4 Reflexive modules; 7 Groups Generated by Pseudoreflections; 7.1 Reflections and pseudoreflections; 7.2 The Shephard-Todd theorem; 7.3 A theorem of Solomon; 8 Modular invariants; 8.1 Dickson's theorem; 8.2 The special linear group; 8.3 Symplectic invariants; A Examples over the complex numbers; B Examples over finite fields; Bibliography; Index Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Divisor theory. http://id.loc.gov/authorities/subjects/sh85038615 Invariants. Groupes finis. Théorie des diviseurs. MATHEMATICS Algebra Linear. bisacsh Divisor theory fast Finite groups fast Invariants fast Endliche Gruppe gnd Invariante gnd http://d-nb.info/gnd/4128781-2 Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 Eindige groepen. gtt Invariants. ram Groupes finis. ram Diviseurs, Théorie des. ram Groupes de classes (Mathématiques) ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067665 http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85038615 http://d-nb.info/gnd/4128781-2 http://d-nb.info/gnd/4162209-1 |
title | Polynomial invariants of finite groups / |
title_auth | Polynomial invariants of finite groups / |
title_exact_search | Polynomial invariants of finite groups / |
title_full | Polynomial invariants of finite groups / D.J. Benson. |
title_fullStr | Polynomial invariants of finite groups / D.J. Benson. |
title_full_unstemmed | Polynomial invariants of finite groups / D.J. Benson. |
title_short | Polynomial invariants of finite groups / |
title_sort | polynomial invariants of finite groups |
topic | Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Divisor theory. http://id.loc.gov/authorities/subjects/sh85038615 Invariants. Groupes finis. Théorie des diviseurs. MATHEMATICS Algebra Linear. bisacsh Divisor theory fast Finite groups fast Invariants fast Endliche Gruppe gnd Invariante gnd http://d-nb.info/gnd/4128781-2 Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 Eindige groepen. gtt Invariants. ram Groupes finis. ram Diviseurs, Théorie des. ram Groupes de classes (Mathématiques) ram |
topic_facet | Invariants. Finite groups. Divisor theory. Groupes finis. Théorie des diviseurs. MATHEMATICS Algebra Linear. Divisor theory Finite groups Invariants Endliche Gruppe Invariante Invariantentheorie Eindige groepen. Diviseurs, Théorie des. Groupes de classes (Mathématiques) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552411 |
work_keys_str_mv | AT bensondj polynomialinvariantsoffinitegroups |